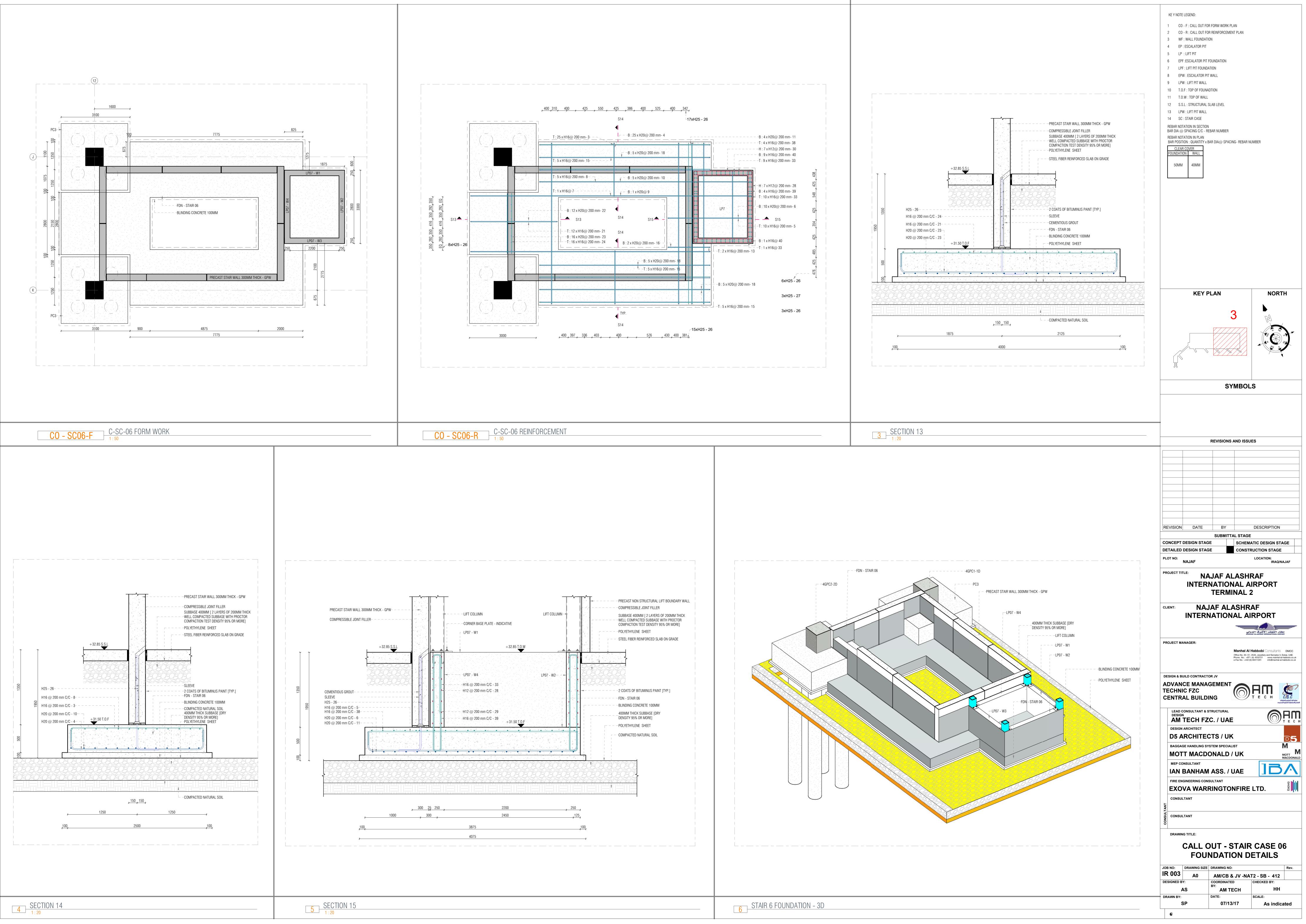
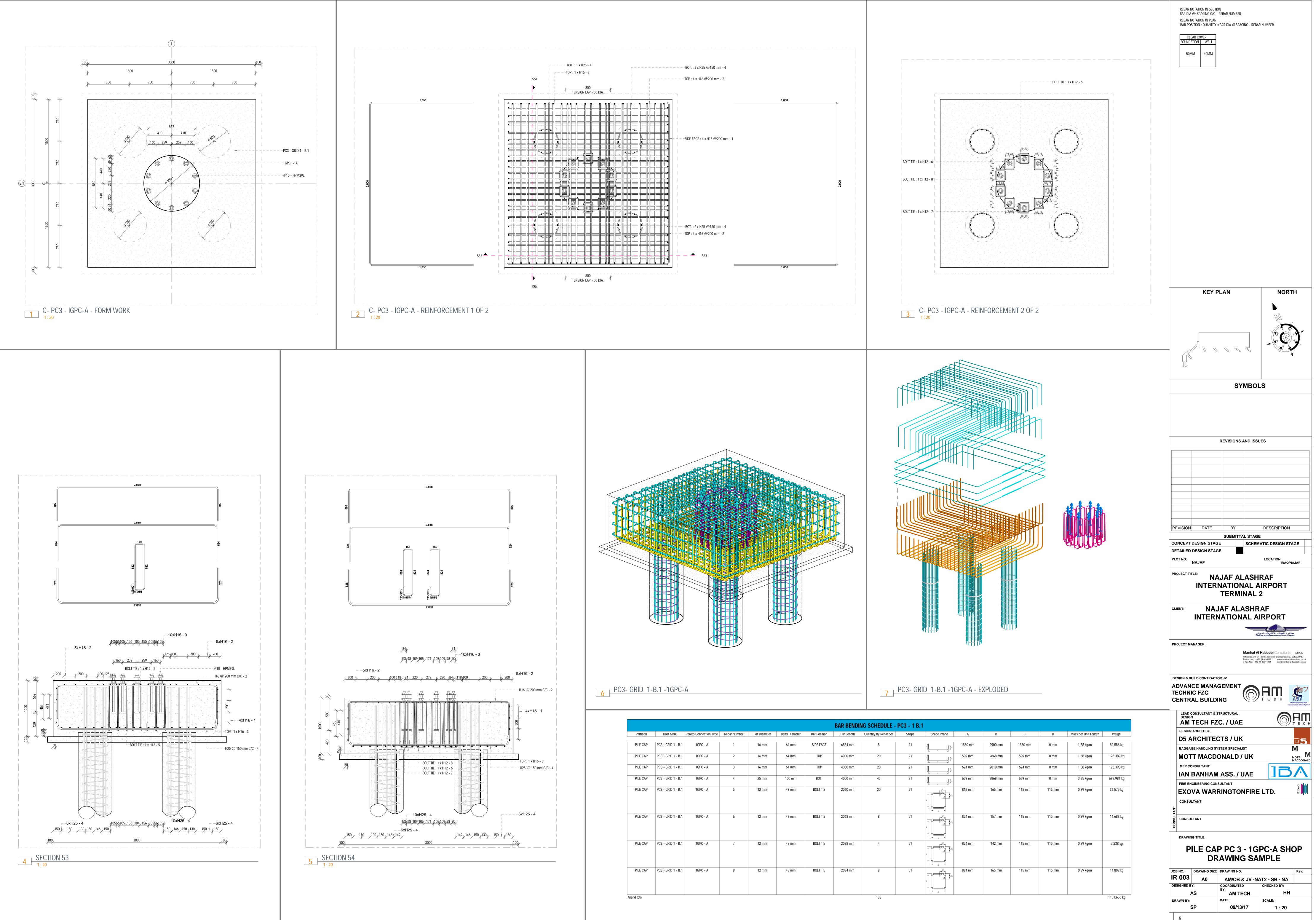
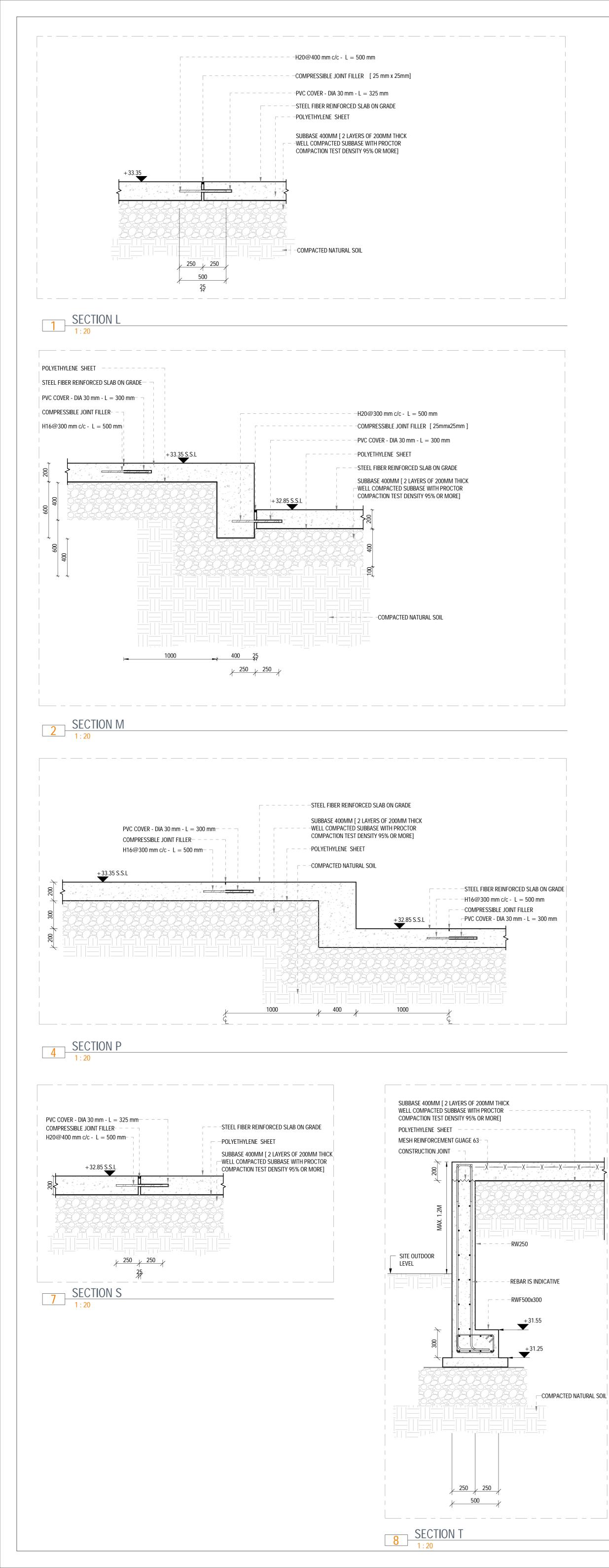
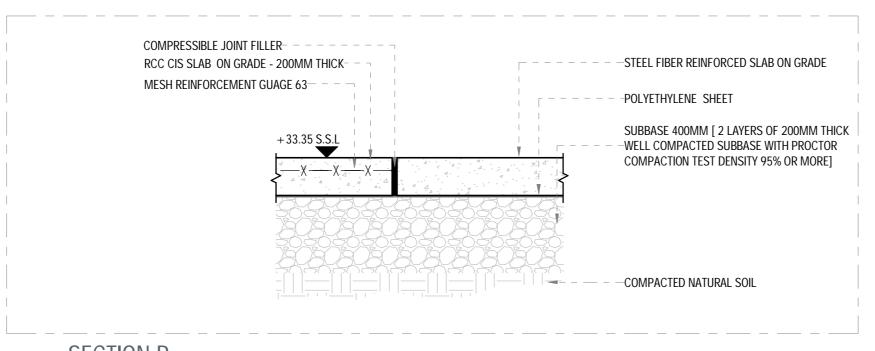
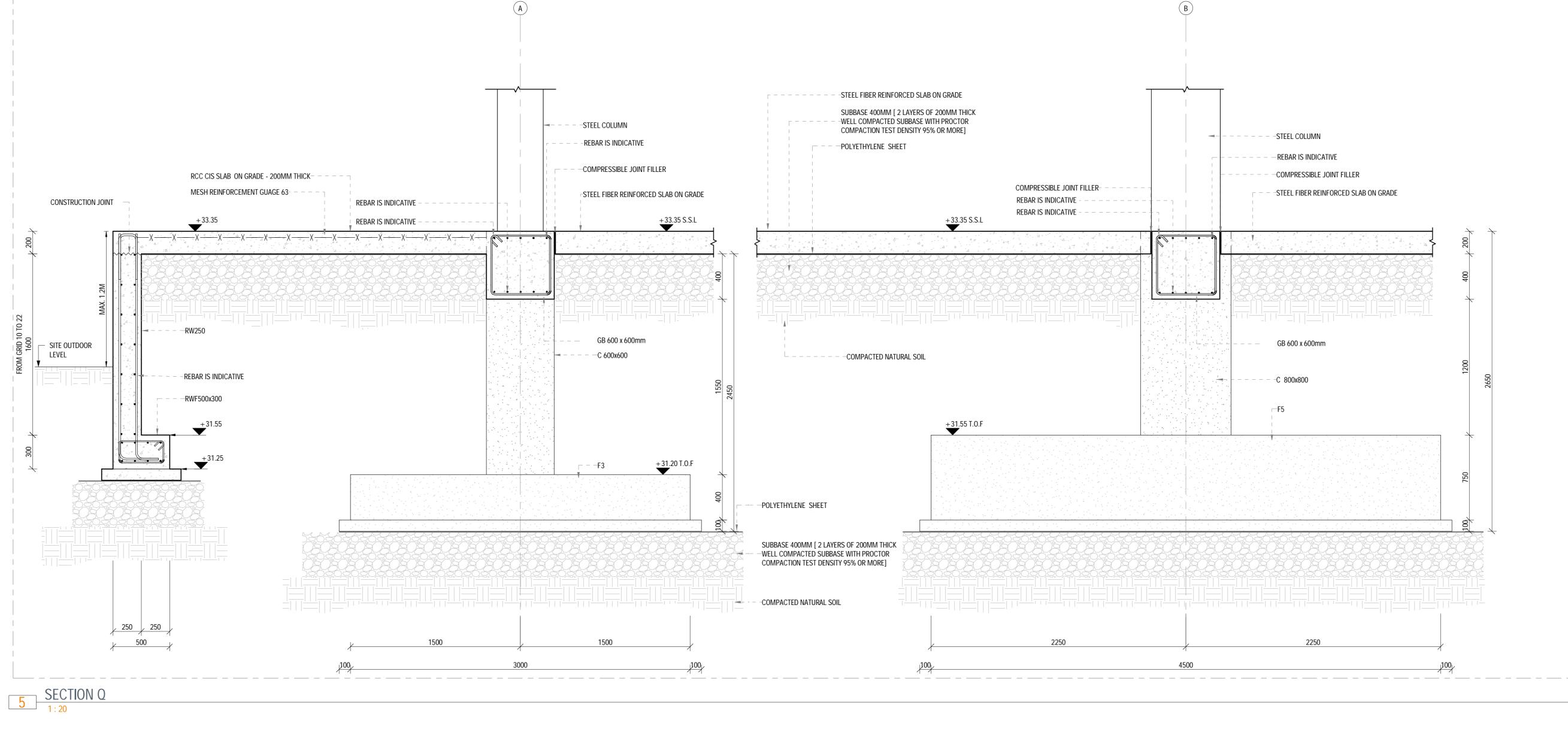

PORTFOLIO

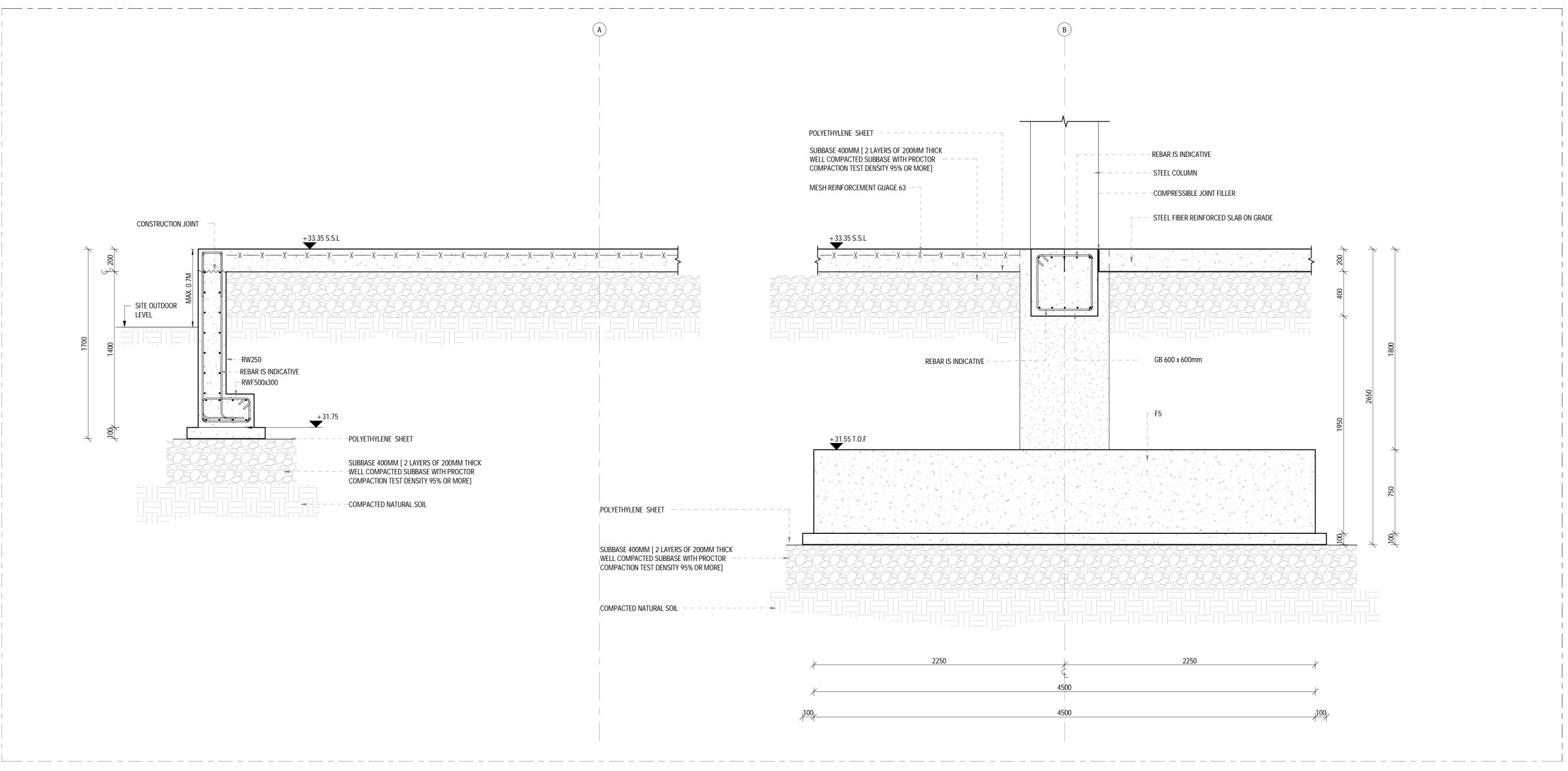

SHAFEEKH MELANGADI

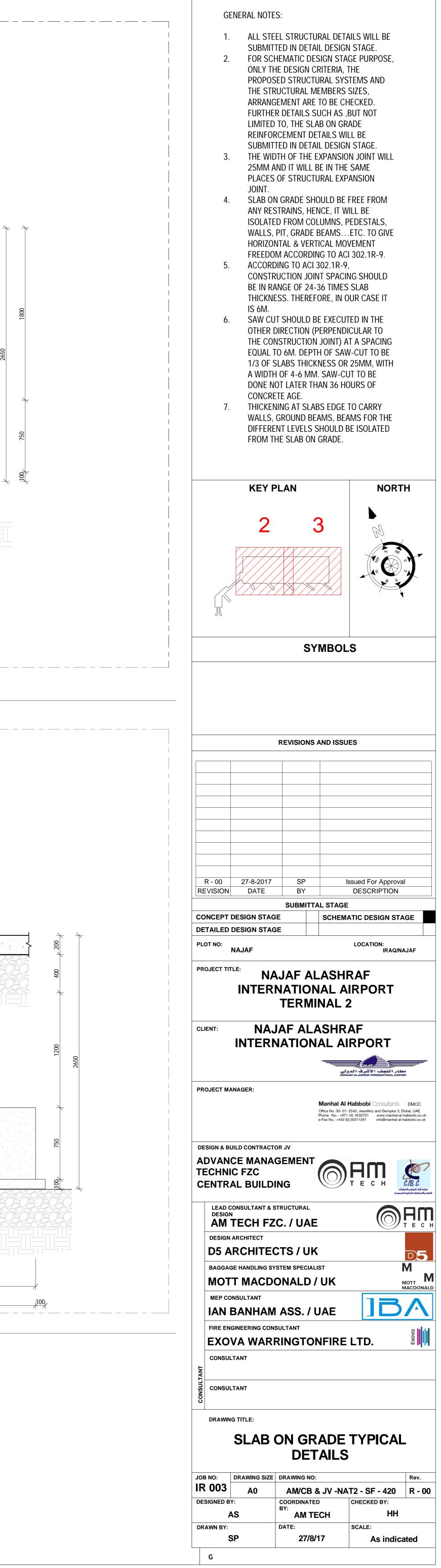

BIM Structural Engineer

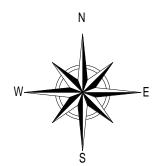

REVIT DETAILING


SAMPLES OF WORKS

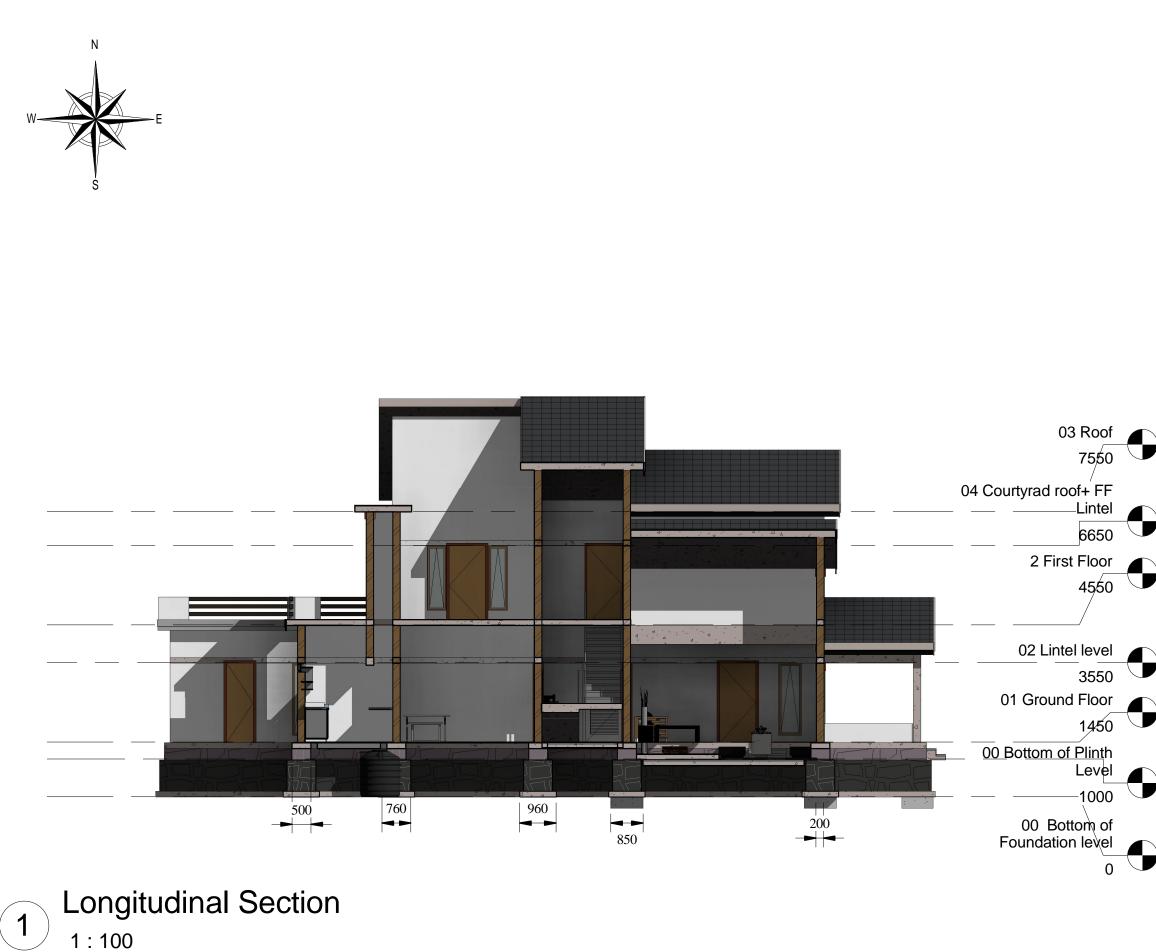


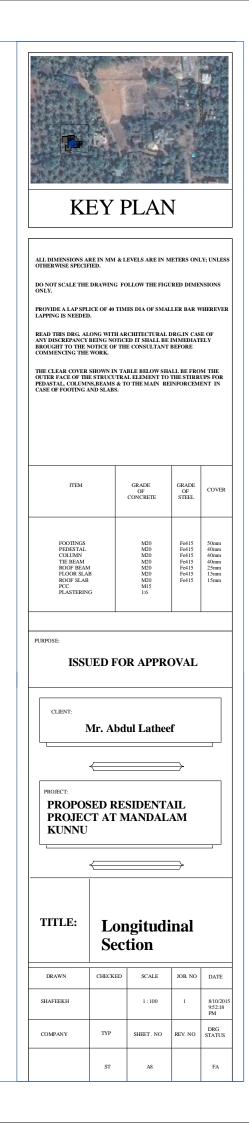

					BAR BENDI	NG SCHEDULE -	PC3 - 1 B.1	l				
onnection Type	Rebar Number	Bar Diameter	Bend Diameter	Bar Position	Bar Length	Quantity By Rebar Set	Shape	Shape Image	А	В	С	D
GPC - A	1	16 mm	64 mm	SIDE FACE	6534 mm	8	21		1850 mm	2900 mm	1850 mm	0 mm
GPC - A	2	16 mm	64 mm	ТОР	4000 mm	20	21		599 mm	2868 mm	599 mm	0 mm
GPC - A	3	16 mm	64 mm	ТОР	4000 mm	20	21		624 mm	2818 mm	624 mm	0 mm
GPC - A	4	25 mm	150 mm	BOT.	4000 mm	45	21		629 mm	2868 mm	629 mm	0 mm
GPC - A	5	12 mm	48 mm	BOLT TIE	2060 mm	20	51		812 mm	165 mm	115 mm	115 mm
GPC - A	6	12 mm	48 mm	BOLT TIE	2068 mm	8	51		824 mm	157 mm	115 mm	115 mm
GPC - A	7	12 mm	48 mm	BOLT TIE	2038 mm	4	51		824 mm	142 mm	115 mm	115 mm
GPC - A	8	12 mm	48 mm	Bolt Tie	2084 mm	8	51		824 mm	165 mm	115 mm	115 mm
I		1	I	I	1	133						I

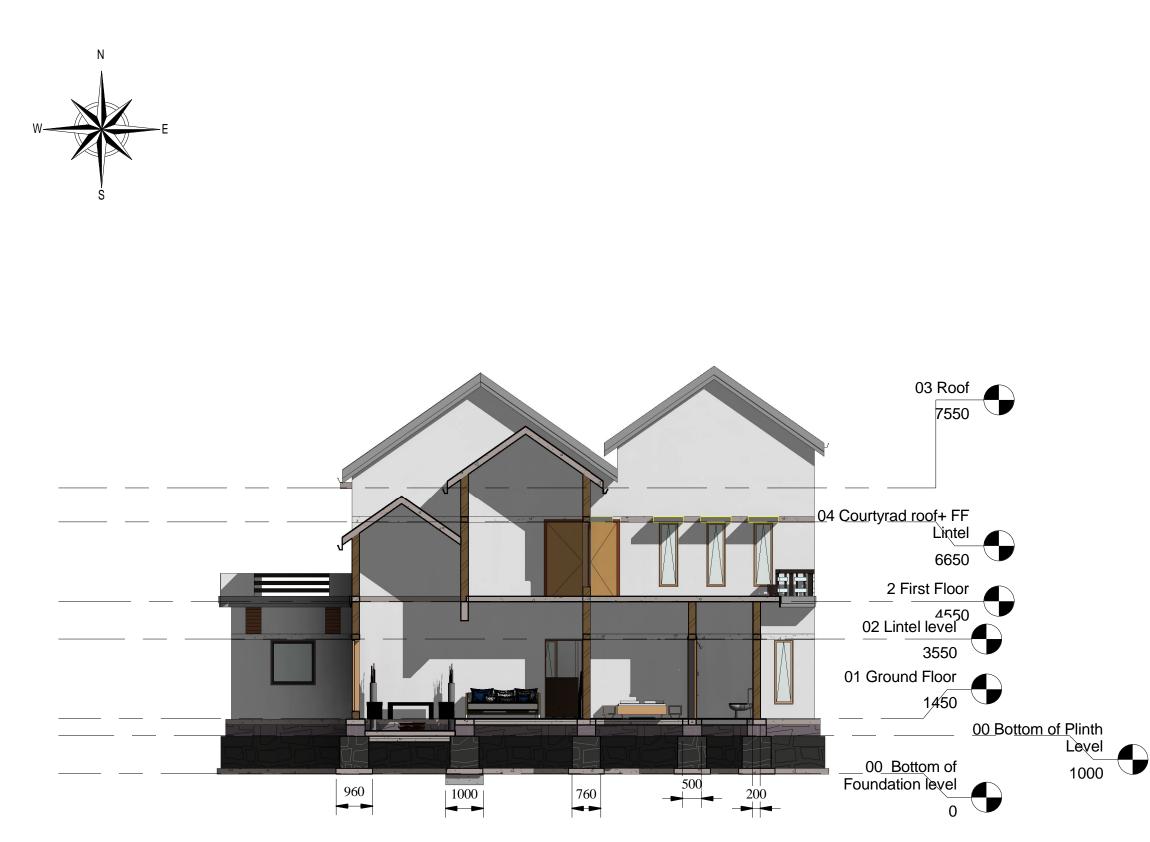




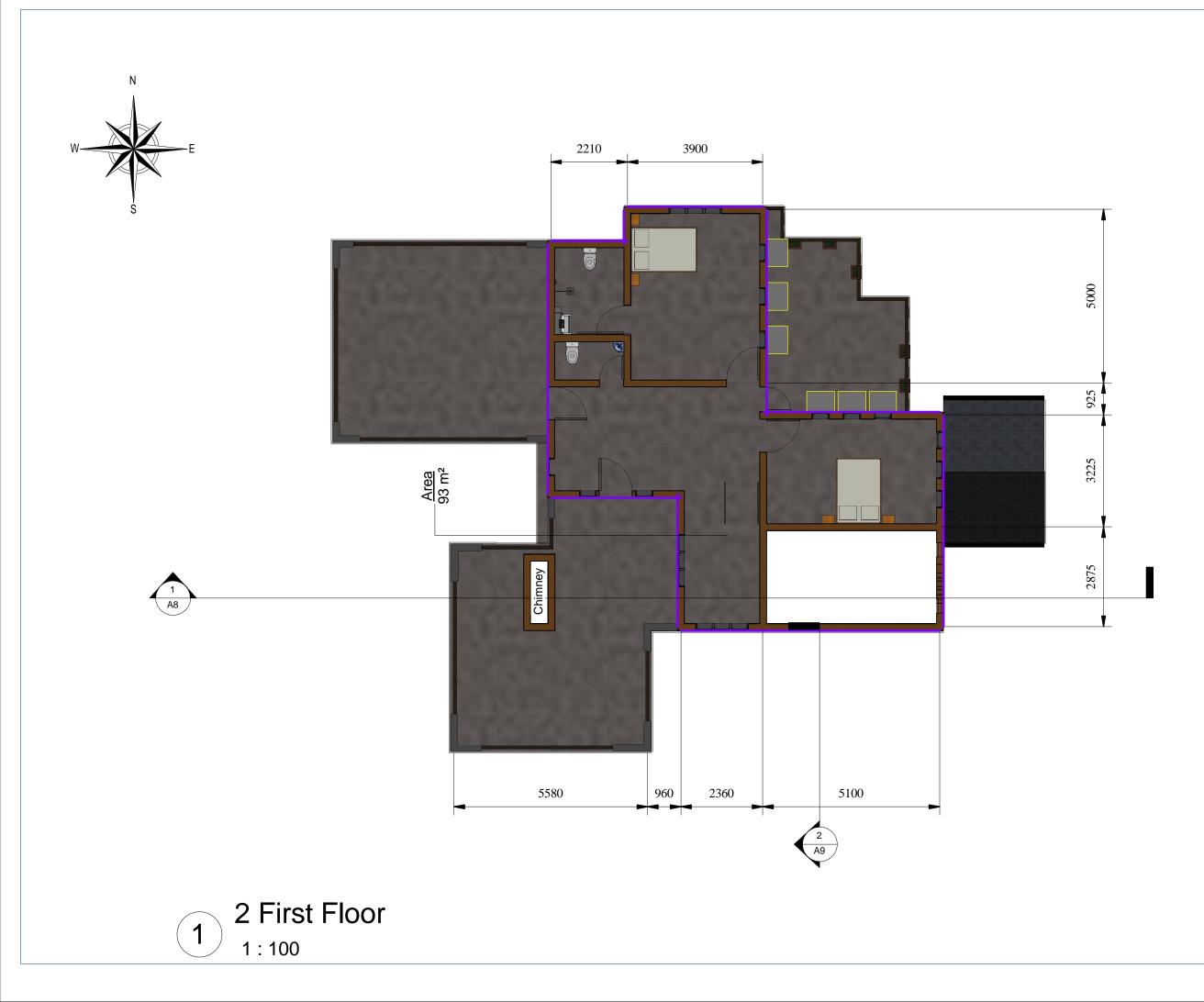
3 SECTION N 1:20

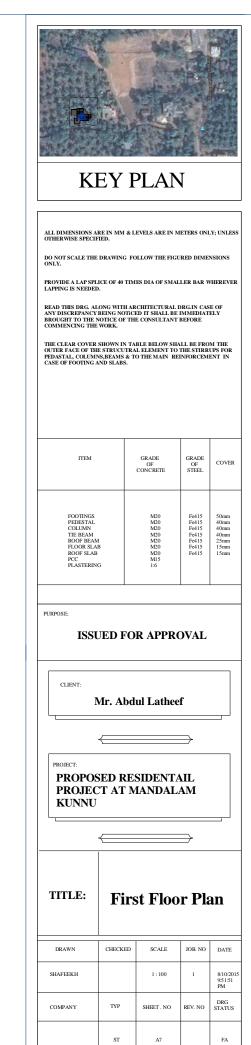


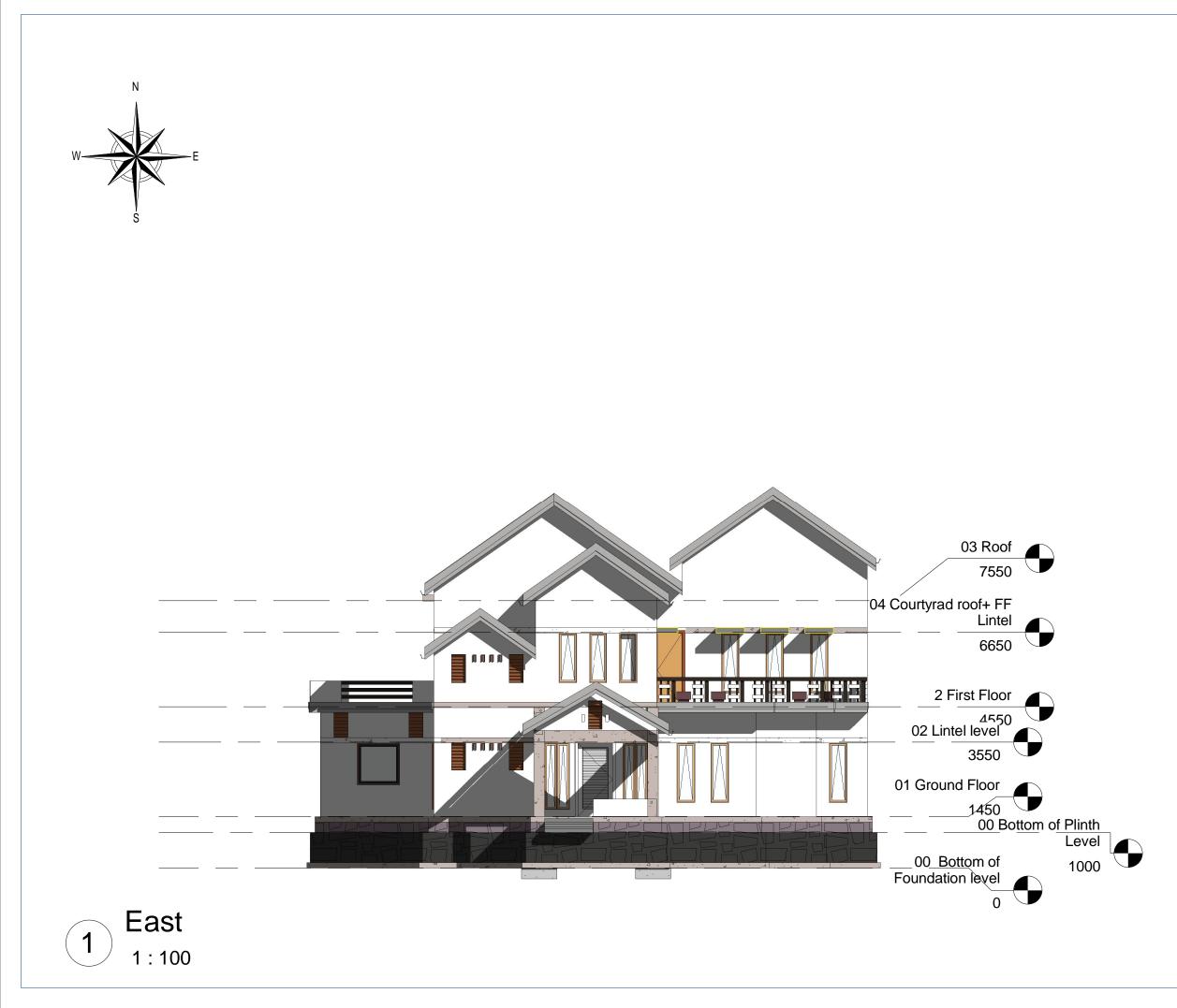




K	EYI	PLAN	1	
ALL DIMENSIONS A OTHERWISE SPECIE DO NOT SCALE THE ONLY. PROVIDE A LAP SPL LAPPING IS NEEDED READ THIS DRG. AL ANY DISCREPANCY BROUGHT TO THE N COMMENCING THE THE CLEAR COVER THE CLEAR COVER OUTER FACE OF TH PEDASTAL, COLUMN CASE OF FOOTING A	IED. DRAWING F ICE OF 40 TE ONG WITH A BEING NOTIC SHOWN IN T SHOWN IN T	YOLLOW THE FIGU MES DIA OF SMAL RCHITECTURAL I CED IT SHALL BE HE CONSULTANT ABLE BELOW SHA	RED DIME LER BAR V DRG.IN CAS IMMEDIAT BEFORE LL BE FRO	NSIONS WHEREVER E OF ELY M THE UPS FOR
ITEM		GRADE OF CONCRETE	GRADE OF STEEL	COVER
FOOTINGS PEDESTAL COLIAIN TE BEAM FLOOF BLAA FLOOF SLAA PCC PLASTERING	В	M20 M20 M20 M20 M20 M20 M20 M15 1:6	Fe415 Fe415 Fe415 Fe415 Fe415 Fe415 Fe415	50mm 40mm 40mm 25mm 15mm 15mm
PURPOSE:	JED F()R APPR(OVAL	
	Mr. Abo 	dul Lathee	f ⇒	
		ESIDENTA MANDAL		
TITLE:	Gro Pla	ound F n	 loor	
DRAWN	CHECKED	SCALE	JOB. NO	DATE
Author		1:100	1	8/10/2015 9:51:33 PM
COMPANY	TYP	SHEET . NO	REV. NO	DRG STATUS
	ST	A6		FA

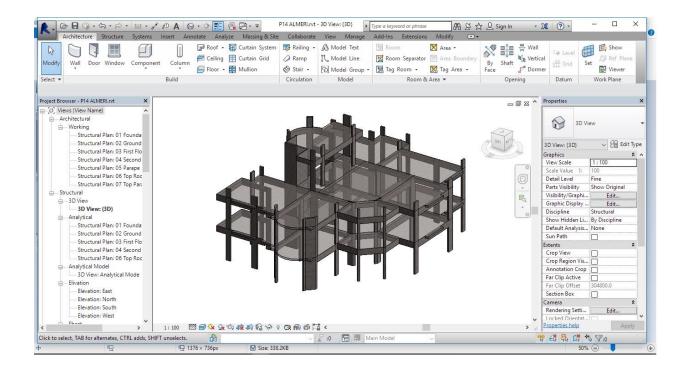


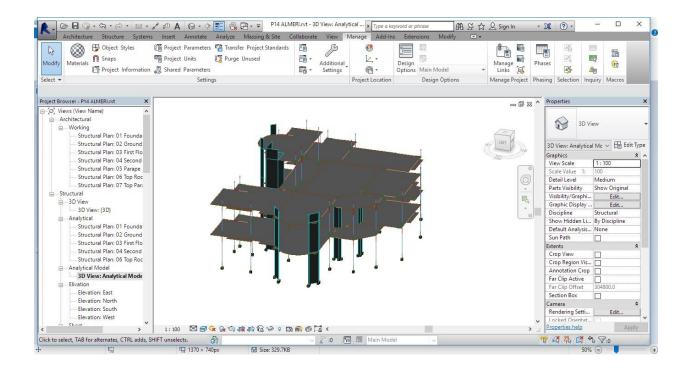




Lateral Section

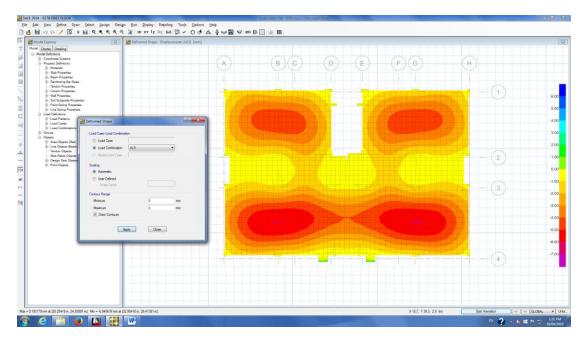
KI	EYI	PLAN	1	
ALL DIMENSIONS AI OTHERWISE SPECIF	RE IN MM & I IED.	LEVELS ARE IN M	ETERS ONI	Y; UNLESS.
DO NOT SCALE THE ONLY.	DRAWING F	OLLOW THE FIGU	RED DIME	NSIONS
PROVIDE A LAP SPL LAPPING IS NEEDED	ICE OF 40 TIN	4ES DIA OF SMAL	LER BAR W	HEREVER
READ THIS DRG. AL ANY DISCREPANCY BROUGHT TO THE COMMENCING THE THE CLEAR COVER OUTER FACE OF THI PEDATAL COLUMN CASE OF FOOTING A	BEING NOTIC IOTICE OF TH WORK. SHOWN IN T.	ED IT SHALL BE HE CONSULTANT ABLE BELOW SHA	IMMEDIAT BEFORE ALL BE FRO THE STIRR	ELY M THE UPS FOR
ITEM		GRADE OF CONCRETE	GRADE OF STEEL	COVER
FOOTINGS PEDESTAL COLIMN THE BEAM ROOF BLAM FLOOR SLAB PCC PLASTERING	3	M20 M20 M20 M20 M20 M20 M20 M15 1:6	Fe415 Fe415 Fe415 Fe415 Fe415 Fe415 Fe415	50mm 40mm 40mm 25mm 25mm 15mm 15mm
PURPOSE:	JED FC	OR APPRO	OVAL	
	Ar. Abd	lul Lathee	f	
		SIDENTA MANDAL		
· · · · · ·			\Rightarrow	
TITLE:	Lat	teral Se	ectio	n
DRAWN	CHECKED	SCALE	JOB. NO	DATE
SHAFEEKH		1:100	1	8/10/2015 9:52:38 PM
COMPANY	TYP	SHEET . NO	REV. NO	DRG STATUS

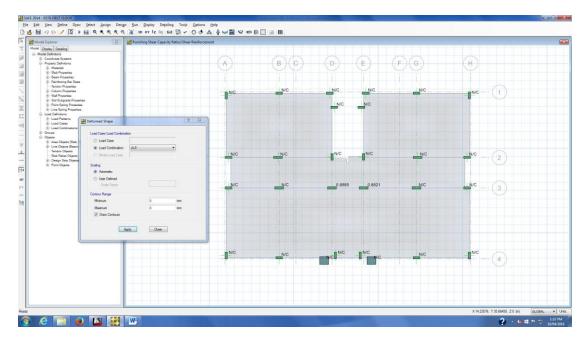

	EV		T	
K	EY.	PLAN		
ALL DIMENSIONS A OTHER WISE SPECIF	FIED.			
DO NOT SCALE THE ONLY.				
PROVIDE A LAP SPI LAPPING IS NEEDEI	D.			
READ THIS DRG. AI ANY DISCREPANCY BROUGHT TO THE I COMMENCING THE THE CLEAR COVER OUTER FACE OF TH PEDATAL, COLUM CASE OF FOOTING .	BEING NOTI NOTICE OF T WORK.	ICED IT SHALL BE THE CONSULTANT FABLE BELOW SHA	IMMEDIAT BEFORE ALL BE FRO THE STIRR	ELY M THE UPS FOR
ПЕМ		GRADE OF CONCRETE	GRADE OF STEEL	COVER
FOOTINGS PEDESTAL COLUMN THE BEAM ROOF BLAB FILOOR SLAB PCC PLASTERIN	B 3	M20 M20 M20 M20 M20 M20 M20 M15 1:6	Fe415 Fe415 Fe415 Fe415 Fe415 Fe415 Fe415	50mm 40mm 40mm 25mm 15mm 15mm
PURPOSE:	UED FO	OR APPRO	OVAL	
CLIENT:	Mr. Ab	dul Lathee	f	
			\Rightarrow	
	T AT	ESIDENTA MANDAL		
	<───		\Rightarrow	
TITLE:	Ea	st Eliva	tion	L
TITLE:	Ea		JOB. NO	DATE
			1	
DRAWN) SCALE	JOB. NO	DATE 8/10/2015 9:52:48


Adjecent Plot 41x38m Ν 28500 3000 8855 Private Road 17296_ 26221 11996 10996 14121 16921 1500 -Н 1768 G 5200 - Wqll 30700 -29200-2868 F 8228 D Е Property Line 4058 С 3000 Building Line 6628 В 13027 15338 А 1200 5509 4300 Unpaved Road 1 13449 15051

KI	EY H	PLAN	1	
ALL DIMENSIONS AI OTHERWISE SPECIF DO NOT SCALE THE ONLY. PROVIDE A LAP SPL LAPPING IS NEEDED READ THIS DRG. AL ANY DISCREPANCY BROIGHT TO THE N COMMENCING THE THE CLEAR COVER THE CLEAR COVER THE CLEAR COVER OUTER FACE OF THIS PEDASTAL, COLUMN CASE OF FOOTING A	IED. DRAWING FO ICE OF 40 TIM ONG WITH AB BEING NOTICE KOTICE OF TH WORK. SHOWN IN TA E STRUCUTRA	DLLOW THE FIGU ES DIA OF SMAI CCHITECTURAL I E ONSULTANT BLE BELOW SH/J	RED DIME LER BAR V DRG.IN CAS IMMEDIAT BEFORE ALL BE FRO	NSIONS WHEREVER E OF ELY M THE UPS FOR
ITEM		GRADE OF CONCRETE	GRADE OF STEEL	COVER
FOOTINGS PEDESTAL COLLMN TIE BEAM ROOF BEAM FLOOR SLAI PCC PLASTERING	В	M20 M20 M20 M20 M20 M20 M20 M15 I:6	Fe415 Fe415 Fe415 Fe415 Fe415 Fe415 Fe415	50mm 40mm 40mm 25mm 15mm 15mm
CLIENT:	1	R APPRO A10 ul Lathee		
PROJECT: PROPOS PROJEC KUNNU		SIDENT / IANDAL		
TITLE:	Site	Plan		
DRAWN	CHECKED	SCALE	JOB. NO	DATE
SHAFEEKH		1:200	1	8/10/2015 9:52:56 PM
COMPANY	TYP	SHEET . NO	REV. NO	DRG STATUS
	ST	A11		FA

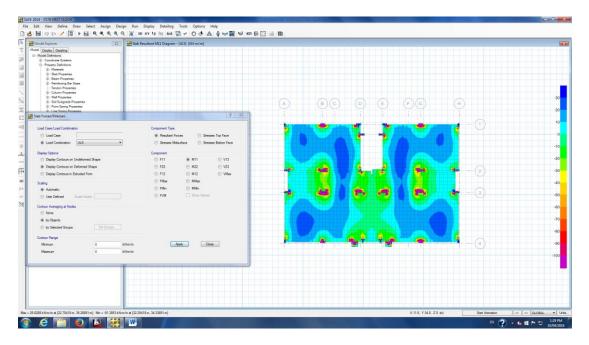
REVIT STRUCTURE


ANALYTICAL MODEL IN REVIT



SAFE

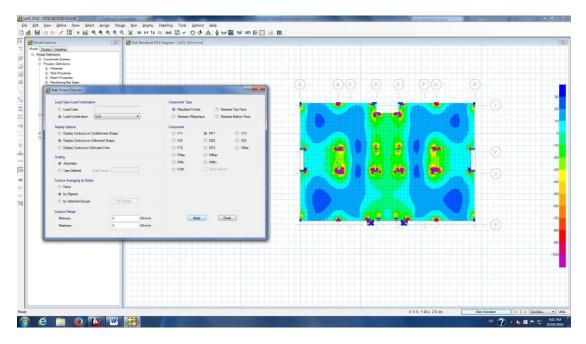
ANALYSIS AND DESIGN OF SLAB



First Floor Downward Displacement-ULS

First Floor Slab Punching Check- No Punching

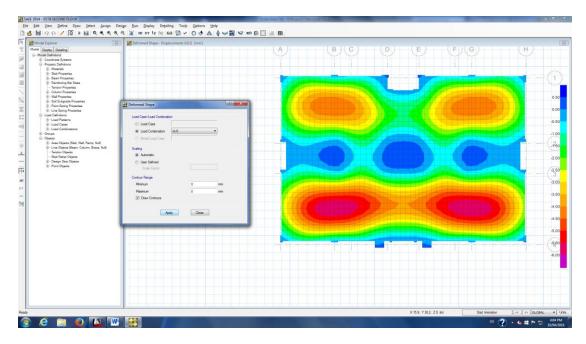
FIRST FLOOR SLAB ANALYSIS

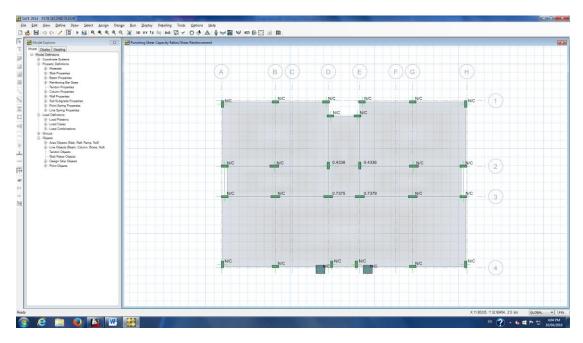


First Floor Slab Moment M11- Load Case- ULS

	itant M22 Diagram - (ULS) [kN-m/m]								
Desting Desting ID Contracts Systems Desting Systems ID Contracts Systems Desting Systems ID State Properties Desting Systems									
8 - Wal Properties 8 - Sol Subgrade Properties			(B)(C)		(E)	(F)(G)	(H)		96
Point Spring Properties Autom Source Processes Stab Forces/Stresses							Y		7
Lood Care-Load Continuation C Lood Care R Load Continuation ULS *	Component Type Resultant Forces Stresses Top Face Stresses Moturtace Stresses Botum Face	2		4	-			0	6 4 3
Daplay Ostore Display Contours on Undeformed Shape Display Contours on Deformed Shape Display Contours in Extunded From Scaling	Component © F11 © M11 © V13 © F22 ₩ M22 © V23 © F12 © M12 © Max © MMax © MMax	-	-	1	×.	-		2	1
Automatic User Defined Scale Factor Contour Averaging at Nodes Tone	O PM O MNn O PM Does Arous		**	-	614	015		3	
by Objects by Selected Groups Set Groups Contour Range Misinum 0 kHen/m	Apply Come			% ?	9 ₈ -			•	-7
Nasmum 0 kHen/m									-10

First Floor Slab Moment M22- Load Case- ULS


TOP ROOF SLAB ANALYSIS


Top Roof Slab Moment M11-ULS

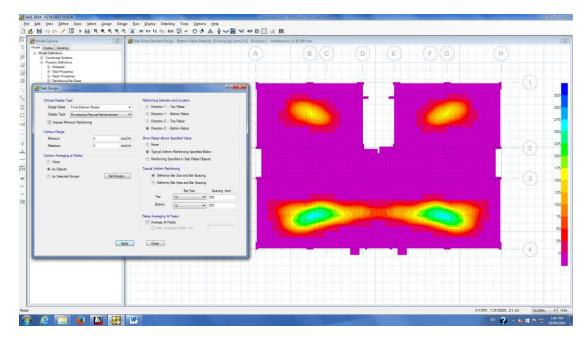
	lab Resultant M02 Diagram - (ULS) [kN-m/m]							
Intel Dasking Model Definitions Property Definitions Property Definitions Misrainin Strates		A	BC	0	E	(F) (G)	H	
Beam Properties Reinforcing Bar Stress	8 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	7			C
Load Case/Load Combination	Component Type							
Load Cose Load Combination LLS	Resultant Forces Stresses Top Face Stresses Modulface Stresses Bottom Face							
Deplay Options O Deplay Contours on Undeformed Shape	Component © F11 © M11 © V13							
Display Contours on Deformed Shape Display Contours in Estruded Form	© F22	-	340	*	*	344		0
Scaling Automatic	PMex MAx PMex PMex PMex PMex PMex Phone PMex							
Contour Averaging at Nodes	O MM C activities	-	34-0	646	329	6%6		0
None by Objects								
Contour Range								
Minimum 0 kNim/m Maximum 0 kNim/m	Apply Close							
T				9-4	200		4	(1
								C.
-								

Top Roof Slab Moment M22-ULS

First Floor Downward Displacement-ULS

Roof Floor Slab Punching Check- No Punching

Model Explorer	lab Finite Element Design - Top Rebar Intensity (Enveloping) [mm2/m] - Direction 1 - Addi	tional to 12 @ 200 mm					
Hool Definitions Constriants Systems Departy Definitions Property Definitions Property State Properties Properties Provide State Properties Provide State Properties	(A)	(B)(C)	D E	(F) (G)	Н	1	ŧ
Bisb Design Concer Daptin Type Design Bells Trinic Durinen Based Tomo Devices Based Tomos Menum Renforment Tomos Menum Renforment Menum Renforme Menum 0 medulin	Americang Dendom and Location Wine Section 1 - Top Peter Orecton 1 - Beam France Dendom 2 - Top Rear Dendom 2 - Beam Rear Dendom 2 - Beam Rear						1.30 1.20 1.10
Notrue 0 mo2io Corto: Averging et Noble O hore & br Questi O br Selected Groups Set Groups	Nove Trace Value Reviews Specified Balan Trace Values Reviews Trace Values Trace Values Second In Stan Reviews Second Values Second Values		zs			3	0.90 0.80 0.70 0.60 0.50 0.40 0.30
	Orange Afrais Image Afrais Image Afrais Image Afrais Image Afrais		7¹ 1 7			4	0.20


First Floor Slab Rebar Required Area – Direction 1 Top Rebar

	3D XY 1Z (n) 64 😳 🗸 O 🚸 🛕 🛊 🥪 📷 😼 📾 🖟 🔯 1				
MM Dauby Dauby Most Definitions Proper Definitions Proper Definitions State Property State Properties Restrictions Bar Salas	(A) i	BC	D E	F G	(H) (1)
Side Denyn Oese Denyn Tyse Denyn Tear Tros Denne Nasal Denyn Tear Tros Denne Nedrong Ortras Rege Menun 0 mellin Namun 0 mellin Namu Cretor Arengig a toba O fre Si y Sieteid Groups Se Groups	Perforces Decision and Location Original 1: Tay Relat Original 2: Barline Original 2: Barline Relat Original 2: Barline Relat Original 2: Barline Relat Original Union Relations Specified Relate Original Union Relations Original Union Relations Original Union Relations Original Union Relations Original Union Original		U		
	Com				

First Floor Slab Rebar Required Area – Direction 1 Bottom Rebar

Aodel Explorer	ao xy 1z (n) 6a 😳 🗸 [O 🚸 🛕 🍦 🥽 🕼 🕼 🦛 📻 🖸				
Deskip (Deskip) Order (Deskip) Order Defetor Order Defetor Popper Order Deskip Deship (Deskip) Deship (Deskip) Deship (Deskip) Scholarg (Deskip)	A i	BC	D E	(F) (G)	H (1)
Const Daily Tak Deep Take Treas Genere Based Deep Take Texas Genere Based Texas Mensue RearRoung Const Range Mensue	Perfore Dector ad Locan Decision 1 - Tipe Rear Decision 1 - Ban Rear Decision 2 - Tipe Rear Decision 2 - Tipe Rear Decision 2 - Tipe Rear Decision 2 - Ban Rear Decision 2 - Ba			0- 8-	
	Com		** *		- (4)

First Floor Slab Rebar Required Area – Direction 2 Top Rebar

First Floor Slab Rebar Required Area – Direction 2 Bottom Rebar

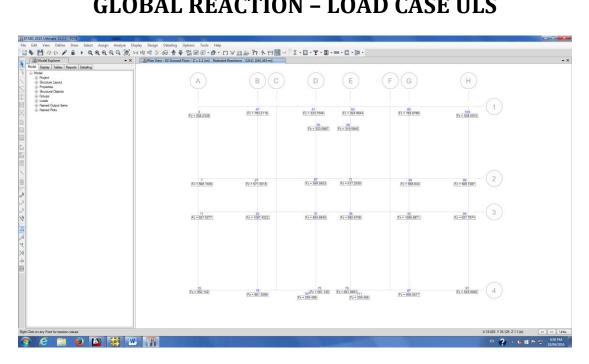
Image: Second Secon	Hodel Explorer	🕄 🗌 🔡 Slab Finite Element Design - Top Rebar Intensity (Envel	(oping) (mm2/m) - Direction 1	- Additional to 12 @ 200 mm						
<pre>style Toring Style and Listen ************************************</pre>	(i) Considents System (i) Popular Definitions (ii) Materials (iii) Materials (iii) Materials (iii) Populars (iiii) Populars (iiii) Populars (iiiii) Populars (iiiii) Populars (iiiii) Populars (iiiiii) Populars (iiiiii) Populars (iiiiii) Populars (iiiiii) Populars (iiiiii) Populars (iiiiii) Populars		- Y	B C	D	E	F G	· · ·		E
grome in the Constant Index of the Constant						1				1.20
 Decine 2 - Sig Alex Decine										1.10
And and a set of a se										1.00
num o o modo Norego gl Note Vogens y fonte Groep Vogens y fonte Groep Vogens y fonte Groep Vogens y fonte Groep Vogens y fonte Groep Vogens vogen										0.90
Windowski • Transford Holes Reductions Bandwick Holes • Productions Bandwick Holes • Productions Bandwick Holes • Productions	num 0 mn2/n									
me me Mentany Face Managementany Face Mana										0.8
r Senter Grage		Reinforcing Specified in Stab Reber Objects					M			0.70
Debusty for twee colls for twe										0.60
	A new order									0.50
										0.4
		Bottom 12 • 200								0.30
										0.2
										0.10
	Acoly	Close								0.00
								X 10.06006 Y 40.08281 Z 0	in) GLOBAL	•

Top Roof Slab Rebar Required Area – Direction 1 Top Rebar

	😥 👔 Sab Finite Element Design - Bottom Rebar Intensity (En	weloping) (mm2/m] - Direction	n 1 - Additional to 12 @ 200 mm					
Morde Dauble, Dealing) = Mord Dechnicors © Consciences Systems © Property Definitions © Alternative © Alternative © Seare Properties © Seare Properties		٢	ВС	D	E	(F) (G)	H,	
Tardon Properties Column Properties Wat Densarties sign	2	-						0.00
e Display Type ign Beas — Frinz Element Dased • Jelay Type — Element Bentlassement • Inspose Minimum Reinforcing ar Range	Revforing Direction and Location Direction 1 - Tap Rebar Direction 1 - Barten Rebar Direction 2 - Barten Rebar Direction 2 - Barten Rebar							0.00 0.00 0.00 0.00
num 0 mm2/m imum 0 mm2/m r Avenging at Nodes fone y Objects	Share Rebur Rorve Specified Value None Typical Uniform Revitating Specified Below Revitation Specified in Sale Rebur Objects Typical Unitam Revitacing						2	0.0
Selected Groups Set Groups	Bethine by Bar Stee and Bar Speaking Deline by Bar Asea and Bar Speaking Ber Stee Speaking (intri) Top 12 12 200 Bettern 12 12 200							0.0
	Reber Averaging Al Peaks Macage Al Peaks Mac. Averaging Width (m)							0.0
Acoly	Core]					4	0.0
-								

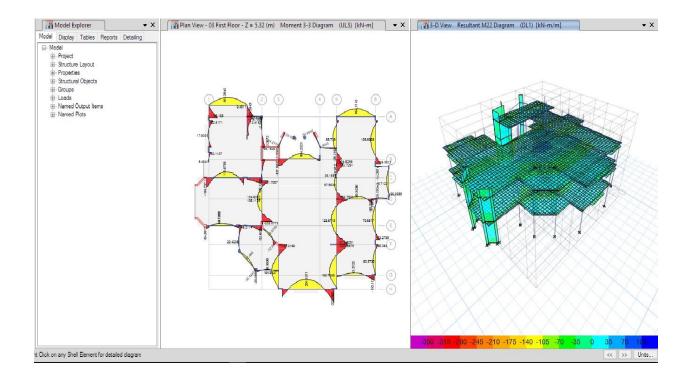
Top Roof Slab Rebar Required Area – Direction 1 Bottom Rebar

Model Explorer Model Daptay Desaing	Sab Finite Element Design - Top Rebar Intensity (Enve	eloping) [mm2/m] - Direction.	2 - Additional to 12 @ 200 mm					3
Control Letrands Control Letrands Control Letrands Control Letrands Control Letrands Control Letrands Control Reportes Column Reportes Column Reportes Column Reportes Column Reportes		A	ВС	D	E	F G	H	E 1.30
sign	-9 							1.20
Deplay Type gn Basis Finke Element Based 🔹	Renforcing Direction and Location			The second	Contraction of the			1.10
play Type Enveloping Resural Reinforcement	Direction 1 - Bottom Rebar Direction 2 - Top Rebar							1.00
Impose Minimum Reinforcing	Direction 2 - Top Rebar Direction 2 - Bottom Rebar							0.90
vinum 0 mn2/m	Show Rebar Above Specified Value							
dmum 0 mm2/m	 None Typical Uniform Reinforcing Specified Below 							0.80
ur Averaging at Nodes None	Reinforcing Specified in Sab Rebar Objects						(2)	0.70
by Objects	Typical Uniform Reinforcing							0.60
by Selected Groups Set Groups	Define by Bar Size and Bar Spacing Define by Bar Area and Bar Spacing		-			1		0.50
	Bar Sze Specing (mm)							0.40
	Top 12 💌 200							
	Bottom 12 • 200							0.30
	Reber Averaging Al Peaks							0.20
	What Averaging Width (w)							0.10
Acoly	Cose							0.00
7609	Cose			A DEP	-			
							- (4)	
¥							X 13.39283, Y 25.08536, Z 0 (n)	GLOBAL * U


Top Roof Slab Rebar Required Area – Direction 2 Top Rebar

	🔝 🗍 🔡 Slab Finite Element Design - Bottom Rebar Intensity (Enveloping) (mm2/m] - Direc	tion 2 - Additional to 12 @ 200 mm				
Motel Dastan, Dealing → Mode Definitions → Mode Definitions → Research Definitions → Research → Research → Research → Research → Tendor Properties → Tendor Properties → Tendor Properties		A	B C	D (E	F G	· ·	
S - Wat Percenten sign							325
e Display Type sign Basis Frinte Damon Based • play Type Envirol Reinforcement • Incode Minimum Reinforcing ur Range	Perform Direction and Location Direction 1 - Tap Rear Direction 1 - Tap Rear Direction 1 - Barton Rebar Direction 2 - Tap Rebar Direction 2 - Barton Rebar Direction 2 - Barton Rebar		0		0		300 275 250 225
mum 0 mm2/m imum 0 mm2/m # Averaging at Nodes Hone y Objects	Show Robar Above Specified Value Toole Topold Unform Reinforcing Specified Below Topold Unform Reinforcing Social Reinford In Solo Rebaro Objects Typold Unform Reinforcing					· 2	20
y Selected Groups Set Groups	Define by Bir Size and Bir Spacing Define by Bir Area and Bir Spacing Bir Size Battern 12 12 12 12 12 12 12 12 12					3	12 10 7
	Reber Avengeng A Peeks C Avenge A Peeks C Max. Avengeng Width: (n)		0				5
	Core						
						X 15 36685, Y 28,64886, Z 0 (m)	GLOBAL *

Top Roof Slab Rebar Required Area – Direction 2 Bottom Rebar


GLOBAL REACTION – LOAD CASE ULS

Force Unit- kN

ETABS

ANALYSIS AND DESIGN OF RESIDENTIAL VILLA

ROBOT STRUCTURAL ANALYSIS

ANALYSIS AND DESIGN OF RESIDENTIALVILLA

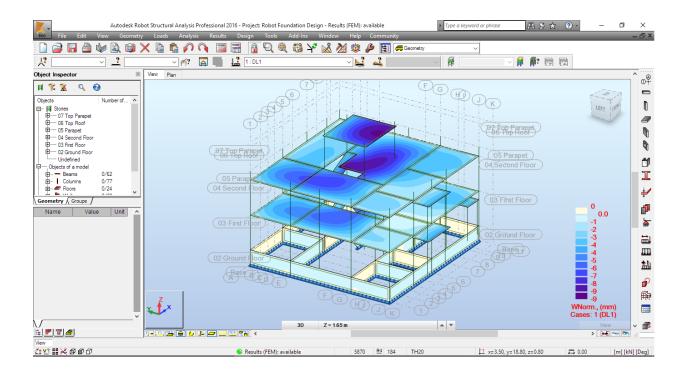
This report shows the structural design of the Floors and Global Reaction forces of Columns under load case ULS. The 3D Analytical Model is created and analysed in CSI SAFE 2014 V14.1.1 software. All analysis and design are based on the BS 8110-1997 code. All design parameters are shown through Table 1 to 5.

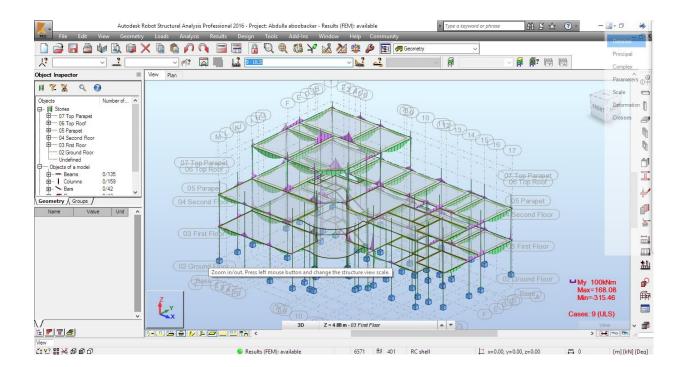
Concrete	Value	Unit		
Characteristic Compressive Strength, f_{ck}	C40	N/mm ²		
Young Modulus, E:	28000	N/mm ²		
Poisson Ratio	0.2	—		
Shear Modulus, G	11666.66	N/mm ²		
Density	25	KN/m ³		
Damping Ratio	0.15	—		
Thermal Expansion Coefficient	0.000012	(1/°C)		
Table 1				

Steel	Value	Unit	
Yield Strength of Steel, fy:	460	N/mm ²	
Poisson Ratio	0.3	—	
Shear Modulus, G	80000	N/mm ²	
Density	77.01	KN/m ³	
Damping Ratio	0.06	—	
Thermal Expansion Coefficient	0.000012	(1/°C)	
Reduction Factor For Shear	1.54		
Limit Strength for Tension	640	N/mm ²	
	Tak	ole 2	

Load	Value	Unit
Super Imposed Dead (Floor Finishes + Partition Wall Load)	6	KN/m ²
Live Load	2.5	KN/m ²

Table 3


Load Factor	Value	Unit			
Live Load	1.6	_			
Dead Load	1.4	—			
	Table 4				


Load Combinations
 Value

 ULS
 1.4DL+1.6LL

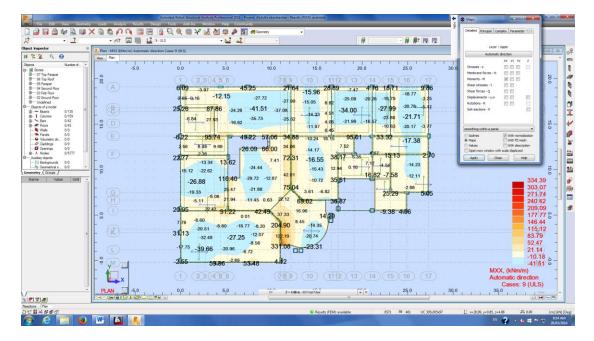
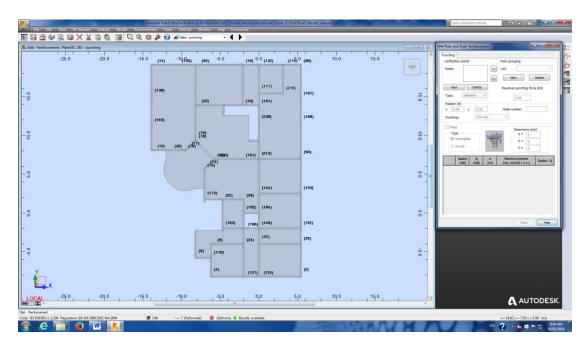
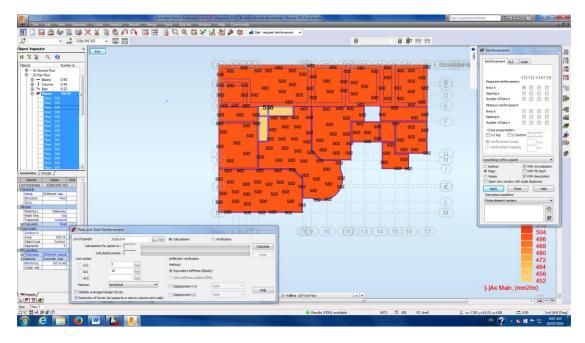

 SLS
 1DL+1LL

 Table 5

FIRST FLOOR SLAB ANALYSIS


First Floor Slab Moment M11- Load Case- ULS

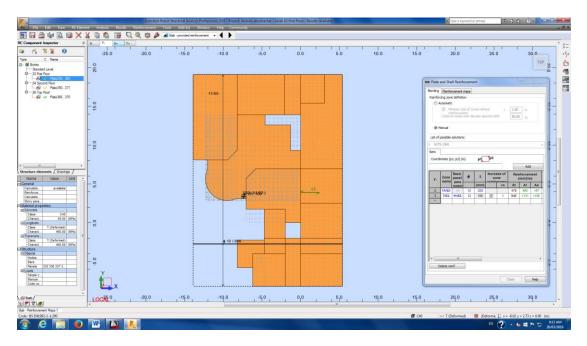
Open Lett Name Open Lett Name Open Lett Name Open Lett Image: State S	Concerner BILIS Display Stress Displa	Image: second particular Image:
Cpen new window with scale displayed	4s -35.24 22.00 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 18.22 10.02 <	273.51


First Floor Slab Moment M22- Load Case- ULS

	Autodesk Pobot Structural Analysis Professional 2015 - Projecti Abdulla aboobacker - Results (FEM): evailable	Type a keyword or phrase	A S 🛧 💿 🔽 🖛 🗖 📥
	In the second se		
メ・ユ・ <i>州</i> 回目 Li	9:0.5 • 🛃 🤞 - 🔒 🎥 🖽 🖄		
Object Inspector II Plan - Whiorm. (mm) Cases: 9 (UL)			9 x 0 a
H T Z Q O Vev Pan	N		
Openet 1 + 0 Maps Control Maps I I Barre I I Barre <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>30.0 35 31 31 31 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>No No No 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0 35 31 31 31 5 5 5 5 5 5 5 5 5 5 5 5 5 5	No No No 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0

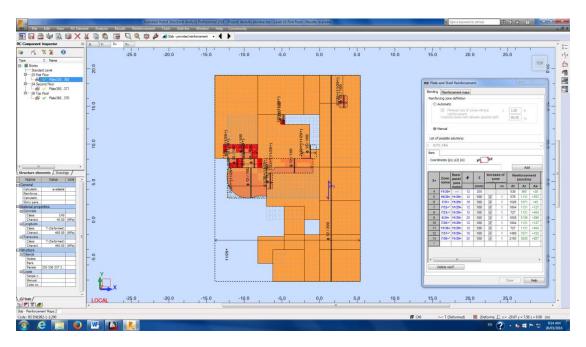
First Floor Downward Displacement-ULS

First Floor Slab Punching Check- No Punching


First Floor Slab Rebar Required Area Bottom X direction

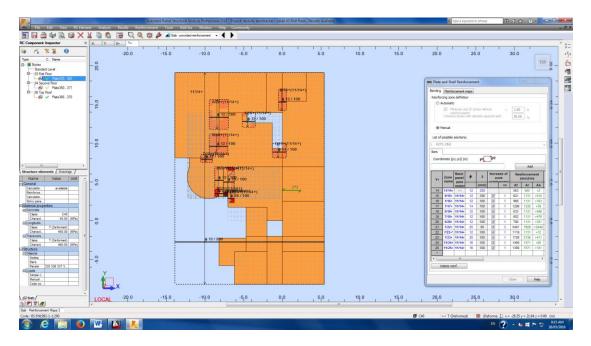
First Floor Slab Rebar Provided Area Bottom X direction

Ro File Edit View Geometry Loads Analysis Results Design Tools Add-Ins Window	Professional 2016 - Proyect Adultie absolute ar- Results (FLM) annihile Help Community A M D D D D de Don-result enforcement	 Egge a legword or phrase A S the O · · · · · · · · · · · · · · · · · ·
11 · · · · · · · · · · · · · · · · · ·		
Olivert here the	F	+ @ Reinforcements
N Note Image: Control of the control of	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	For Array Control
Containing Area Arearea Area Area Area Area Area		723 680 595 552 510 468 452 [-JAy Perpendicular, (mm2/m)
Reduction of forces (at supports or above columns and walls)	1 1 1	• [#[~]m]
29 C 📋 🕑 👑 🔼	● Results (FEM): available 6571 원 401 THOD, CONCR	Li x=17.17, y=-1.85, z=4.88 🚍 0.00 [m] [M4] [Deg () - 4 🖬 🏴 🗇 903 AM 26/03/2016


First Floor Slab Rebar Required Area Bottom Y direction

First Floor Slab Rebar Provided Area Bottom Y direction

		Autodesk Robot Structural Analysis Professional 2015 - Projecti Abdulla aboobacker - Results (FEM): available	🕴 Type a keyward or phrase 🛛 🛱 💲 🏠 🕥 + 💶 💷 👞
	He Edit View Geometry Loads Analysis Results	Design Tools Add-Ins Window Help Community	- 6
Image:	541 FT CT MR 46. 124 - 44 14 00 - 18 -08 1 4	The last a start a start a start and the sta	
		8	
Note 1 Image: 1 mining 1 mini	Eut		Reinforcements
Notesting 	N TO 20 Non for Dest Market 2 Dest State for Dest State for	egg 502 502 502 <t< th=""><th>000 500 000 000 500 000 000 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 100 100 500 100 100 500 100 100 500 100 100 1500 1500 1500 1500 1500 1500</th></t<>	000 500 000 000 500 000 000 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 500 000 500 100 100 500 100 100 500 100 100 500 100 100 1500 1500 1500 1500 1500 1500
Determiny Display	ACC Internet ACC Internet ACC	With stiffness update (FDI)	452
		Devisionment (d) Auto T	View 📑
·꼬림·옷 정 @ 경 · · · · · · · · · · · · · · · · · ·		In the second seco	* (# ~ M
	12 × 8 8 8	Results (/EM): available 6571	


First Floor Slab Rebar Required Area Top X direction

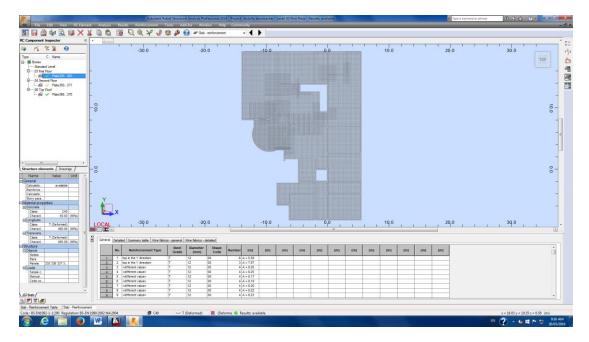
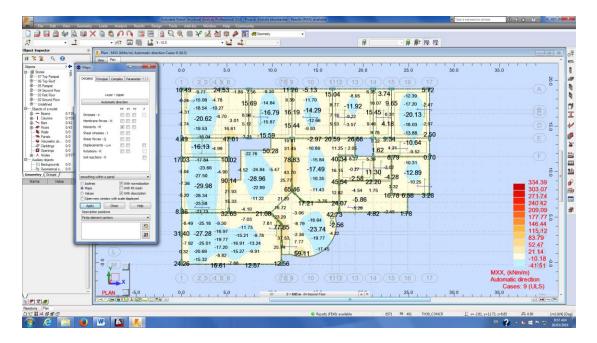

First Floor Slab Rebar Provided Area Top X direction

Image: state and state an		A B C mand whome	479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479	470 475 47 479 479 479 479 479 479
minute diagram 1 3600 3600 3600 3600 3600 3150	• None 022 Fore 022 Fore 022 • None 022 • None 022 None 022 None 022 • None 022 • None 022 None 022 None 022 • None 022 • None 022 None 022 None 022 • None 022 • None 022 · None 022	479 479 600 479 479 960 479 479 79 479 479 79 479 479 79 479 479 780 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479	79 479 479 479 479 479 479 479 479 479 4	479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 49 479 479 479 479 479 479 49 479 479 479 479 479 479 479 479 479 479
	Attribution For an intervention For an intervention For an intervention Attribution Statutor Statutor For an intervention For an intervention Statutor Statutor Statutor For an intervention For an intervention Statutor Statutor Statutor For an intervention For an intervention Statutor Statutor Statutor For an intervention For an intervention Statutor Statutor Statutor For an intervention For an intervention Statutor Statutor For an intervention For an intervention For an intervention Attat Statutor For an intervention For an intervention For an intervention Attat Statutor For an intervention For an intervention For an intervention	werkase comm ass 2,30,45,6 1) und Floor und Floor st Floor ord Floor me foraroet		13 14 15 16 2700 2250 1300 1350 1350 1350 1350 1350 900 452 (+]Ay Perpendicular, (mm2/m)

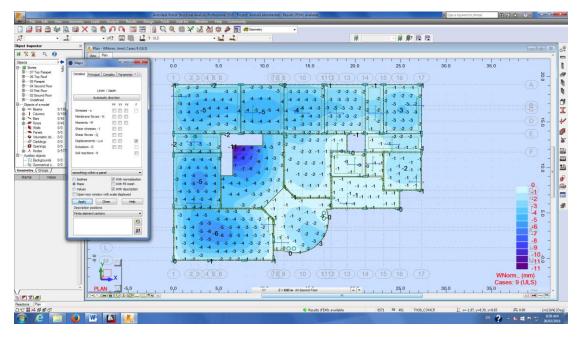
First Floor Slab Rebar Required Area Top Y direction

First Floor Slab Rebar Provided Area Top Y direction

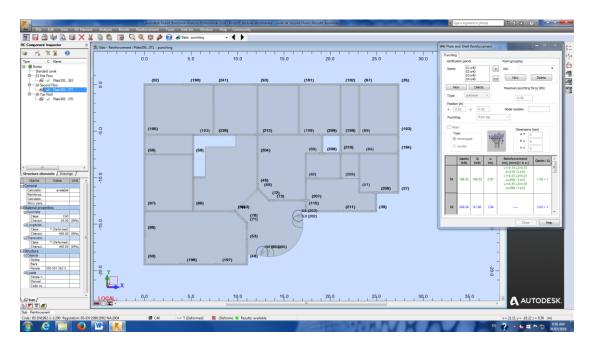


First Floor Slab Rebar Provided Area Top View

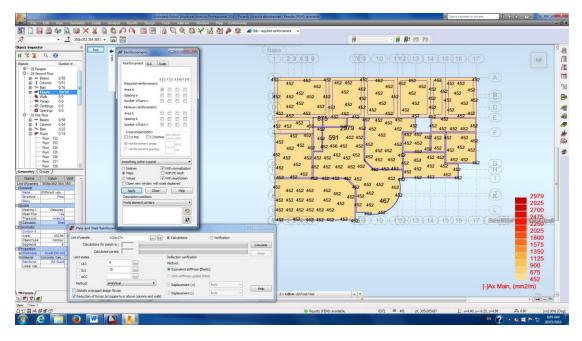
		e a legword or phrase
	Reults Renforcement Tools Add-bit Window Holp Community	- 8 ×
RC Component Inspector B +		
Image: Control Image:		
- 0 - 0		- 8- -
Noncence denomini, (0 2000) - Name Value Unit Cleaned 1000 Unit Cleaned 1000 000 Cleaned 6400 000 Cleaned 1000 000 Cleaned 6400 000 Cleaned 1000 0000 Cleaned	×	
Stab / Berforcement 1 Code: B5 EN1992-1-1:200 Regulation: B5-EN1990:2002 NA:2004		x=8.41 y= 5.13 z= 0.50 (m)
💿 🤄 📋 🕑 🔟 🚺		IN 🥐 - 🌢 🖬 🏲 🗂 26/37/2016

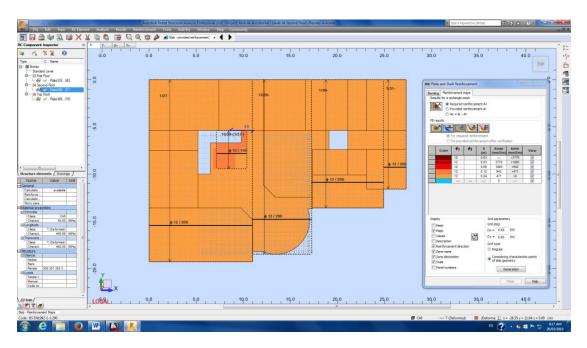

First Floor Slab Rebar Provided Area Bottom View

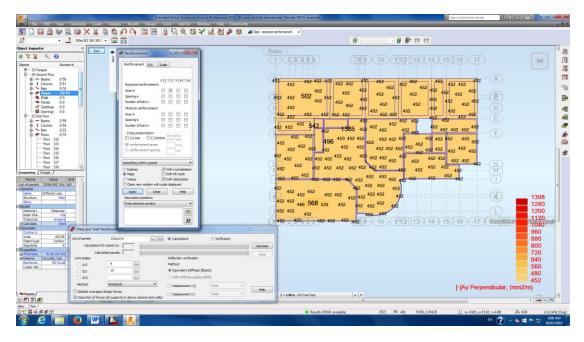
ROOF FLOOR SLAB ANALYSIS

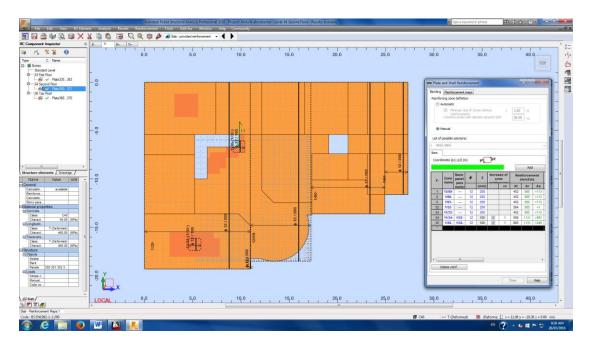


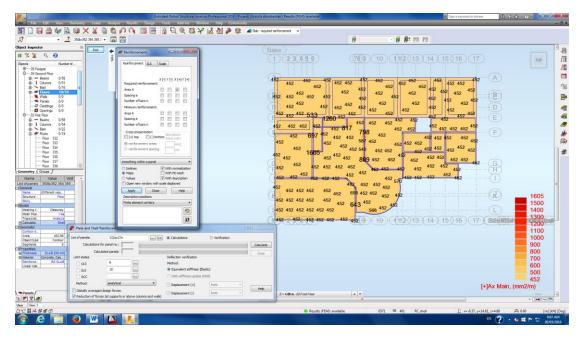
Roof Floor Slab Moment M11-ULS

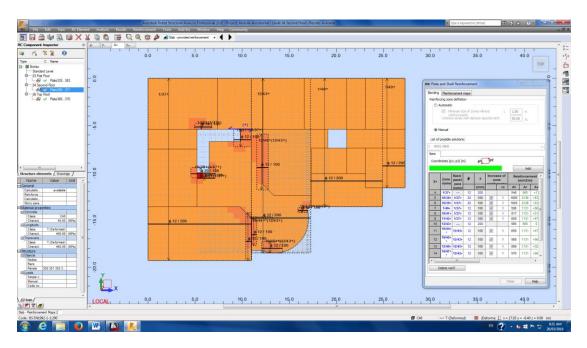

Roof Floor Slab Moment M22-ULS

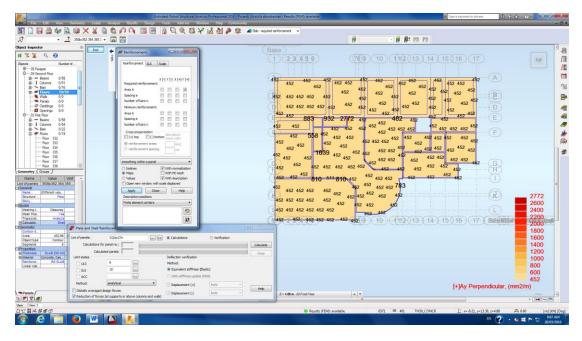

Roof Floor Downward Displacement-ULS

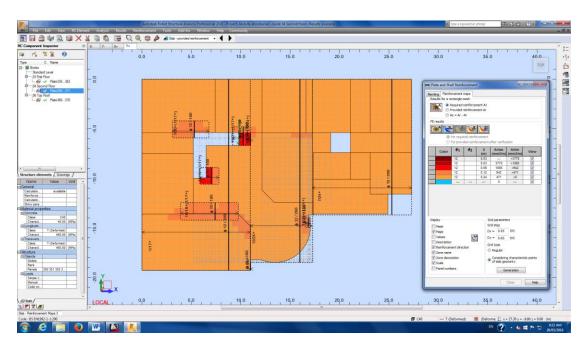

Roof Floor Slab Punching Check- Punching Correction Reinforcement Required at Indicated Green Area

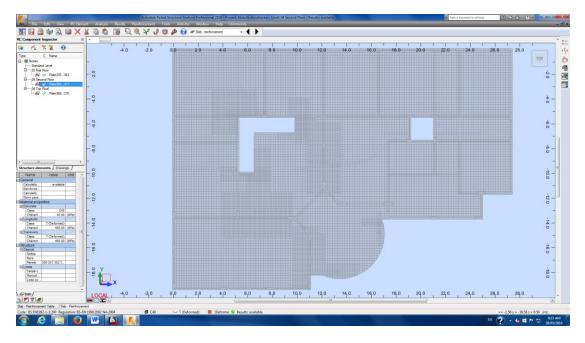

Roof Floor Slab Rebar Required Area Bottom X direction


Roof Floor Slab Rebar Provided Area Bottom X direction


Roof Floor Slab Rebar Required Area Bottom Y direction

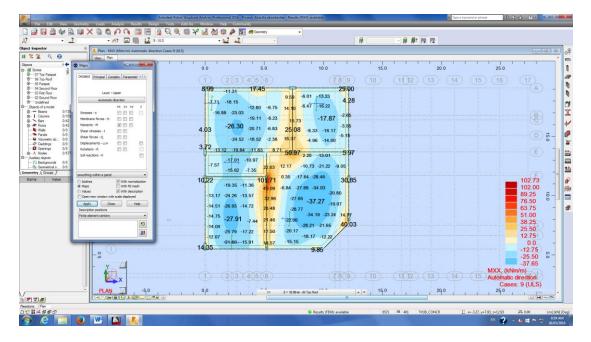

Roof Floor Slab Rebar Provided Area Bottom Y direction


Roof Floor Slab Rebar Required Area Top X direction


Roof Floor Slab Rebar Provided Area Top X direction

Roof Floor Slab Rebar Required Area Top Y direction

Roof Floor Slab Rebar Provided Area Top Y direction



Roof Floor Slab Rebar Provided Area Top View

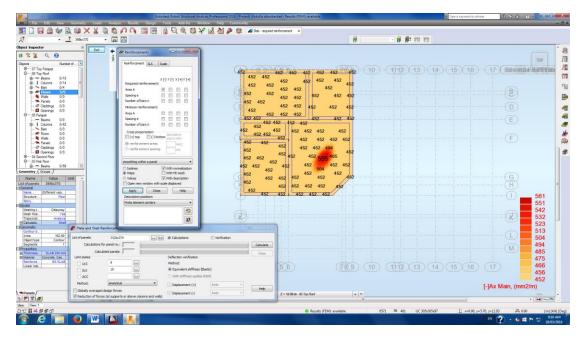
	ral Analyse Professional 2015 - Projecti Abdulla abendarker - Levelt 64 Second Roze - Results: available dd-brit Window Help Community	* Type a keyword or phrase
🗐 🖬 🌢 🍬 🗟 📦 🗙 🗶 🗟 🕲 🔍 🍕 🌾 🖉	🕜 # Seb - renforcement 🔹 🔹 🕨	
RC Component Inspector		1
	0.0 5.0 10.0 15.0 20.0	25.0
Type C. Nove Def Brows		
Anote cannots (Daning) Canceton and Canada (Daning) Canceton and Anote (Daning) Canceton and (Daning) Canceton and (Daning) Canceton and (D		ġ-
Contraction projection		
	0,0 5,0 10,0 10,0 15,0 20,0	
Stab - Reinforcement Table Stab - Reinforcement 1		
Code: 85 EM15922-1-1200 Regulation: BS-EN 15902002 NA2004	T (Deformed) 🗮 (Deforme 🗣 Results available	x=-3.69 y=-2.97 z= 0.50 (m) 9.24 AM 21,03/2016

Roof Floor Slab Rebar Provided Area Bottom View

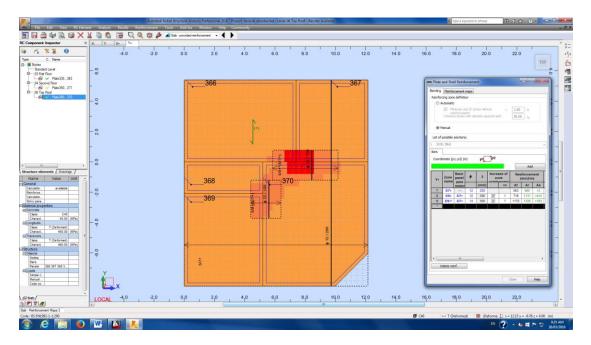
TOP ROOF SLAB ANALYSIS

Top Roof Slab Moment M11-ULS

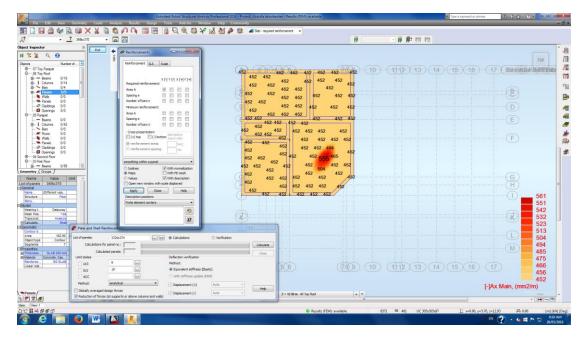
Image: Section of the section of th	iect Inspector	-		0.0.8
Basel Basel <td< th=""><th>122 9 0</th><th></th><th>£ 9 (UD3)</th><th>8 (00)00</th></td<>	122 9 0		£ 9 (UD3)	8 (00)00
	1 2 2 0 1 1 0 0 0 2 1 0	Nop India Ind	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.0 15 16 17 Ationalo dreation Autionalo dreation 22.0 15 16 17 Altionalo dreation 32.00 16.00 48.00 10.0 11.0 10
	ctions Plan			

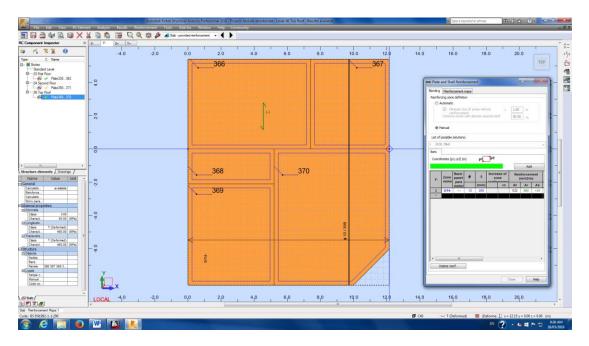

Top Roof Slab Moment M22-ULS

<u>.</u>		Autodesk Robot Structural A	Analysis Professional 2016	Project: Abdulla aboobacker -	Results (FEM): available			Type a keyword or phrase	#1.5 ± 0	· - 0 - ×
	Loads Analysis Results Design			Ceometry						_
12 . 2	• 197 🖾 🐘 🗳 9:	ULS	- 14 -4	-		#	- 解 🃭 🕎			
	Plan - WNorm. (mm) Cases: 9 (ULS)									- 0 a .
	Ana Plan									* e
Objects Maps	ALL CALLED AND AND A		0.0	5.0	10.0	15.0		0.0	25.0	1
	incipal Complex Parameter * *		1) (203	405(6)	6	809 (10)	(11 12) (13)	(14) (15) (16) (17	y . a
B 05 Parapet B 04 Second Roor			- Cele		-					A I
82-03 First Floor 82-02 Ground Floor	Layer : Upper		-2-2-2-3-4	-32 -2 -3 -3	33-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3					1
Undefined Objects of a model	Autonatic direction		3-3-4-4	44 44444	44444444	-4 -3				1 0
B - Beans 0/135 Stresses - 1 B - Columns 0/159			-3 -4 -5 -5	-6-6 -6-5-5-5-5	-5 4 -4 -5 -5 -5 -5 -5 -4	-4 -4				8 - 1
B- Bere 0/42 Membrane B- Roots 0/43 Moments -			-4 -4 -5 -5	-6 -6-6-5-5	-5-5-5-5 -5 -5-5	-4-4				e _ +
Wals 0.0 Shear street	nes-t EE		-6-6	-6 -6 -5 -5 -5	5-4-5-5-5-5-5-5	-4 -4				D - 1
Volumetric ob 0/0 Shear force				-6-6-6	4444 44	-4 -4				
ーロ Openings 0/0 Rotations - 田一人 Nodes 0/577	8 88 C		5.5	.5.5		.3.3				E)
B Ausliev objects 5ol reactio	ns-K 📃		-4 -5	-5-41-4-4-4	4-4-4-4 -4	1-3-3				- 1
- & Geometrical o., 0/0			-2 -3 -3 -4	4-4 -4 -4 -4	-4-4 -4-4 -5-5-5-5 -4	-3-2				+1
Value Value	thin a panel		23344		-5-5 -5-4	1				Ð
Maps	🔃 With FE mesh		3-3-4-4-5	5444444	-6-6-6-6-4	-3-24				-1 🛛 📾
O Values	With description window with scale displayed		3-4-4-5-5-5-	5-5-5-5-5-5-5	-7-7-6 -4	-3				-20 -
Apply			4-4-5-5-6-6-	6-6-5-5-5 6-6	7 7-6 4	1-3				-2 -3 - 1
Description : Finite eleme			4 4.5.5.6	6.6.6 6.6	-7 -76 -5 -6 -6 -4	1-3 m				-3
	0		-6-6		-6-7-7-6	2.1				4
	331		-3-4-5-5-6	6 -5 -5 -6	6 6 - 5	/				-4 -5
			-3-4-4-5-5		44332					-5 -
			2-3-3-4	4.4.4.4.4.4.4	32-1					-6 -70 -
	iii ii									-70-
-	X								-10- C	-/
	· · · · · · · · · · · · · · · · · · ·		1) (203	(40506)		8()9) (10)		(14) (15) (WNorm, (m	
4			0.0					0,0	Cases: 9 (UI 25.0	.S)
			00 1 1	XY Z	= 12.50 m - 08 Tap Roof		1.11.1 1.			
Reactions Plan								- 10		
82 × 8 8 8					Results (FEM): a	rvailable 65	71 원 401 RC shell	∐ x=1.91, y=7.83, z=		[m] [kN] [Deg
😨 C 📋 💆 🛚	😬 🔛							Đ	😯 - 🤹 🖬	26.03/2016

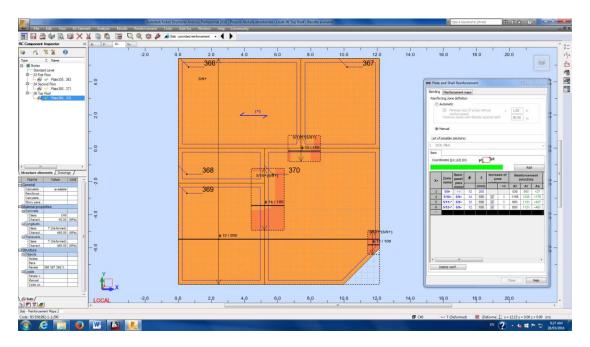

First Floor Downward Displacement-ULS

	Autodesk Robot Structural Analysis Profess	ional 2016 - Project: Abdulla aboobacker - Leve	t 06 Top Roof - Results: available		Type a keyword or phrase
File Edit View RC Eleme					
🛐 🔒 🌰 🍬 🗋 🗙 🕽	🔏 🐘 🛗 🖳 🔍 🍭 🎎 🔑 🞲 🞜 Stabs - punching	- 4)			
RC Component Inspector	Slab - Reinforcement : Plate366370 : punching			(Reinforcement
😂 🐔 🏋 🐼 🚱					Punching 12 ₇₃
Type C Name	-6.0 -4.0 -2.0 0	.0 2.0 4.0	6.0 8.0 10.0 12	.0 14.0 16.0	Verification points Point grouping
E- # Stories Standard Level					Name: Dist: v 🕄
	- 0	(105) (2	(224)	(230)	>> New Delete
E-04 Second Roor				T	New Delete Meximum punching force (41)
B-06 Top Roof					Type: unknown * 0.00
💋 💉 Plate 366 370					Position (m)
					x 0.00 y 0.00 Node number:
	-				Punching: from top v
	_0				Dimensions (mm)
	N				Type a= 0
	_				e rectangular b = 0
		(225)	(240)	(229)	O drouler h = 0
	_°;				Qadm Q u Reinforcement Qadm / Q
< +					(kli) (kli) (m) (m), (mm2) / n x () Galdm / Q
Structure elements / Drawings /	-				
Name Value Unit	_ 0	(111)	(113)	(228)	
Catculatio available	_ ¢i				
Reinforce Calculatio	-				
Story para	0				
Class C40	- 4				
Charact 40.00 (MPa)				(227)	Close Help
ElLongitudin Class T (Deformed)	-			(221)	
Charact 460.00 (MPa)				7	φ
Class T (Deformed) Charact 460.00 (MPa)	Ý			9	ò
E Structure	-				-
Nodes Bars		(109)	(107) (226)		
Panels 366 367 368 3	r¢ v				.e
Simple c					
Manual Code co	🛃 x				
	LOCAL6,0 -4,0 -2,0 0	,0 , 2,0 , 4,0 ,	6,0 8,0 10.0 12	0 14.0 16.0	18.0
Slab/			6,0 8,0 10.0 12		AUTODESK.
Sab - Reinforcement					
Code : BS EN1992-1-1:200 Regulation: BS-EN	1990:2002 NA:2004	🗄 (Deforme 💊 Results: available			x = 5.60 y = -0.93 z = 0.50 (m)
A 10 0	W		And a second sec		EN 🕐 - 🌜 💷 🖿 🗂 9.59 AM
			and the second se		26/03/2016


Roof Floor Slab Punching Check- No Punching

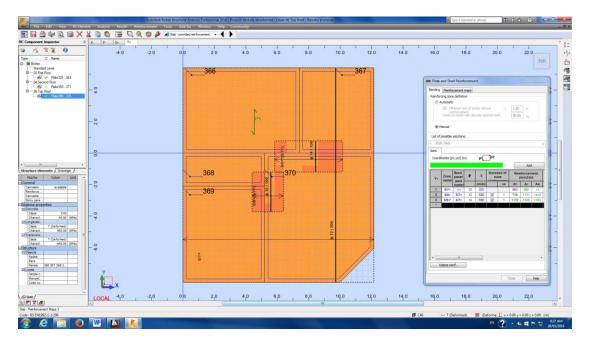

Top Roof Slab Rebar Required Area Bottom X direction

Top Roof Slab Rebar Provided Area Bottom X direction


Top Roof Slab Rebar Required Area Bottom Y direction

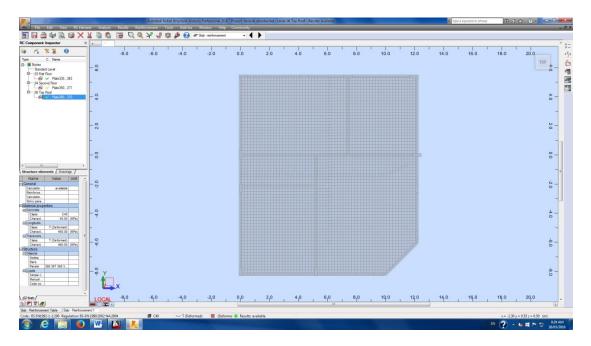
Top Roof Slab Rebar Provided Area Bottom Y direction

If a bail		Autodesk Robot Structural Analysis Profe	ssional 2015 - Project: Abdulla aboobacker - Results (FEM): available		Type a keyword or phrase	品 5 合 💿 - 💼 🗇
	File Edit View Geometry Loads	Analysis Results Design Tools Add-Ins Window	Hép Community			
Version Image: Second Sec	FILL RTM . Man. 1237 . 1944 . 1. 2. 200 . 118		22 🥔 🥨 🥨 📥 Sab - required reinforcement 🔹			
R Notice Image: Signed and Signed Signed and Signed and Sign	• <u> </u>			「「「「「「」」」 「「」」 「「」」 「「」」 「」 「」」 「」 「」 「」	2 12 12 12 12 12 12 12 12 12 12 12 12 12	
	Inspector II Exit					
Image: State of a state state of a state of		ef Reinforcements				
The find and the set of a	a Number of	3 Reinforcement SLS Scale				TOP
Not for 101 H X14714 - Low of the state releases 422 432 432 433 434 432 443 - State releases - State releases - State releas	07 Top Parapet		And the had been and the	(PAR) (10) (1112)	3 (-14) (-15) (16) (-1	7 BRIGRAD HERBORN
i i			452 452			
Image: State 1 Image	80- Columns 0/14 E	X [-] Y [-] X [+] Y [+] Required reinforcement:	452 452 452 452	452 457		
Image: 100 million Image: 100 million		Area A E E E E	452 452 452 452 452 452 452 452 452 452	52		(B)
• Nome • Nome			452 452 452 452 452 452	452 452		((-E-)
G even b Compare			452 452			0
10 10 <td< td=""><td>Querina 0/0</td><td></td><td>452</td><td>452 452</td><td></td><td></td></td<>	Querina 0/0		452	452 452		
Image: Signed and Signed	- 05 Parapet	Area A	452 452 452	452 462		Ð
Image: 100 million Image: 10	Pi- L Columna 0/0		452 452 452			E
Image: set of the leader Image: set of the leader Image: set of the leader Image: set of the leader Image: set of the leader Image: set of the leader Image: set of the leader Image: set of the	- Bars 0/0		452 452 452 452	52 452		
Image: Section of the secting the section of the s		E (+) top (-) bottom description	452 452 046			E
0 0	- S Panels 0/0		452 452 040 452 452			U.
61 Boot Boot Boot Boot Boot Boot Boot Boo				52 452		
0 M M model 0 M M model 0 M M model 0 M M M M M M M M M M M M M M M M M M M				THE		
The set of the feature Image: Set of the s			452 4	52 452		
mm mm 1/42 452			452 452	2 452		
All All <td></td> <td></td> <td>452 452 452</td> <td>2 452 650</td> <td></td> <td>6</td>			452 452 452	2 452 650		6
All States All Sta	anels 366to370		452	for the second s		H H
Image: State of State of State		Apply Close Help	452			
The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The and the function The function The and the function The and the function The function The function The and the function The function The function The function The function The and the function The functin The function The	dure Floor		452 452 452 452 452	2 2		
Visit of chances Visit of chances <td< td=""><td>State of the second second</td><td>Finite element centers</td><td></td><td></td><td></td><td></td></td<>	State of the second	Finite element centers				
com All or 960<	ning t. Delaunay	0				
All Set Former and the features Former and the features Set	zoid. Analyzo	21	(R)			
xxx 10000 10000 10000 <		U				
type Columber for part in : (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	urd.					
Bit is a month Outcome (data) Outcome		332to374 cur Est @ Calculations O P	anfication			100
Name Constraint press Declaration prediction Open		nel no.:	Calculate			
cons 055.44 146 9 Webd 55.8 78.9 10 1112 13 14 15 16 17 540 1 55.8 1 58.9 1 58.9 1 58.9 10 1112 13 14 15 16 17 540 480 4.60 Webda Webda 1 14 15 16 17 540 480 4.60 Webda Webda 10 1112 13 14 15 16 17 540 4.60 Webda Webda 10 1112 13 14 15 16 17 540 4.60 Webda 13 14 15 16 17 540 450 V Webda 10 1112 13 14 15 16 17 540 480 V Webda 10 1112 13 14 15 16 17 140 140 14	ness. SLAB 250 mm		Core			000
Com Com <td>DO DI AD</td> <td></td> <td>1.1</td> <td></td> <td></td> <td>600</td>	DO DI AD		1.1			600
19.5 # * Comment to refer to panel 480 460 * * Comment 480 460 * * Comment 480 460 * * Comment 480 460 * * * 480 460 * * * 480 460 * * * * 480 * * * * * * 450 * * * * * * * * *	ar relo		5 6	(789) (10) (1112)	3)(14)(15)(16)(
Method Institution Diploment (s) Adm Herbit Herbit <t< td=""><td></td><td>20 (m) Couvert somess (basic)</td><td>2</td><td></td><td></td><td>480</td></t<>		20 (m) Couvert somess (basic)	2			480
ets Coded a service desp force (F1AX Main, (mm2/m)) 2 = 10 28 = .61 lps for a West 4 < 5 0 0						
Here Desknownet (c) Ann Z = UBA63 (pkdar A = New Verte Vert Vert Verte	and the second	E contracted (a)			[+]/	x Main, (mm2/m)
】● ************************************						Vere
분 중 같 하 이 · · · · · · · · · · · · · · · · · ·		supports or above countrs and waitsy		#		·
			Results (FEM)	v]; available 6571 ⊞ 401		
						26,03


Top Roof Slab Rebar Required Area Top X direction

Top Roof Slab Rebar Provided Area Top X direction

Autodesk Robot Structural Analysis Professional 2015 - Project: Abdulla absobacke - Perults (FEM): evaluable	Type a keyword or phrase	品 5 🛧 💿 · 🚺 📼 🖸
i Edit View Geometry Laudi Analysis Results Design Tools Add-Inis Window Help Community 🔜 Ar that 🗈 🔯 🗙 X 🗈 🖻 🖉 🕞 🥅 🖼 🖼 🖗 🖉 🕲 🚳 🖽 Viet X M 🖉 🕸 🖉 Stationand inclorement 🔹		
• <u>2</u> 366370 • 同四 # #* 19 19		
Edder Edder Frank Company		
C C C C C C C C C C C C C C C C C C C		
Number d. 4 3 Retrifercement SLS Scale		TOP
Top Perspet		Baseaan Herreit
452 452		
Column 0/14 E Required reinforcement		
bin 04 452 452		(B)
Wale 00 Specing e E E E 924 452 452 452 452		
Panels 0/0 Number of bars n 452 452		0
3 Opening 5/0		(D)
Part de 452 452 452 452		(E)
452 452 608		E
452 452 452 452 452		
Web 0.0 [(+) top [(-) bottom group untr		(F)
Panels 0.0 @ renforcement grass and 452 452 ene		
2 Casting 80 0 metriconent gaorg me 452 452 452 452 452 452 452 452 452 452		
Second Roor 452 452 452 452		
- Renter 0.59		
Solines Wildh normalization 452 452 452		
Value Linet - 0 Values 1/ With description 0 452 452 452 452 452		(G)
Is 3686270 452 452 452 452 452		(H)
(Different value) 452 452 452 453 453 453		The second second
- Floor Description positions		1184
Picte descent conters		1105
Desuration of the second secon		1040
L Analyze		975
Plate and Shell Reinforcest		910
		L 845
e Contour Util or parties: 3326374 Int Contourne Viernadion		100
Calculations for parent no. Calculations for parent no.		(M 715
h Bull 250 mm Colouted parels Coloured Caloured Coloured Caloured Coloured		000
BSSAB mus a line want		585
a us - m resource tellines (lasts) 5.6 (78.9 10 (1112 13 14)(15)(16)(17	520
ACC Whitthesupate (FP)		455
Nethod: enalytical • / Doplacement (+) Auto -		452
	[+]Ay Perpendic	cular, (mmz/m)
Fighbally averaged descen forces		View
Deplacement (-) Auto Z = 12 30 m - 00 Tao Roy A To		
Conserver and ages transfer to transfer to the columns and walks Construction of fucces (at supports or above columns and walks) T		+ 1. 26 -10
Deplacement (-) Auto Z = 12 30 m - 00 Tao Roy A To	Li x=-4.07, y=10.79, z=	• 💓 🖘 0.00 [m]]k


Top Roof Slab Rebar Required Area Top Y direction

Top Roof Slab Rebar Provided Area Top Y direction

	Autodesk Robot Structural Analysis Professional 2016 - Project: Abdulla aboobacker - Level (16 Top Roof - Results: avail	eble Y Type a Reyword or phrase	ASA 0.
	torcement toos Acsum window hep Community		- D' A
RC Component Inspector			1. 120
Image: Control of the second secon	-4.0 -2.0 0.0 2.0 4.0	6.0 8.0 10.0 12.0 14.0	16.0 18.0 1 ² / ₇ ³
Sandad Level Sandad Level			
- 07			20
-8			0- -
Structure elements / Drawings /			E .
Name Value Unit Catolana Catolana Restroco Story area.			-2 -0
Elitatina properties Closes C40 Churse C40 Churset 400 (0%) Elicangluón. Cluss T(deformer)			÷ -
Chevract. 460.00 (00°a). Chevract. 600.00 (00°a). Chevract. 460.00 (00°a). ElShydrubre ElOtypeis. -			- 6.0
Nodes Bers Parels 200 307 308 3. ElGaste Manuel			-
Code co.			ė –
	-4,0 , -2,0 , 0,0 , 2,0 , 4,0 ,	610 <u>810 100 120 140</u>	16.0 18.0
Stab - Reinforcement Table Stab - Reinforcement Code : BS EN1992-1-1:200 Regulation: BS-EN 1990:2002 NA:2004	💋 C40 🛛 — T (Deformed) 🗮 (Deforme 💊 Results: available		x = -4.51 y = 1.33 z = 0.50 (m)
💿 ⋵ 📋 😜 🔤 👪		Di a	

Roof Floor Slab Rebar Provided Area Top View

Roof Floor Slab Rebar Provided Area Bottom View

TEKLA TEDDS

MANUAL CALCULATION

	Project Sample Calcula	ation			Job Ref.	
ΨIJ	Section DB1				Sheet no./rev. 1	
SHAFEEKH MELANGADI	Calc. by Shafeekh	Date 6/2/2016	Chk'd by	Date	App'd by	Date

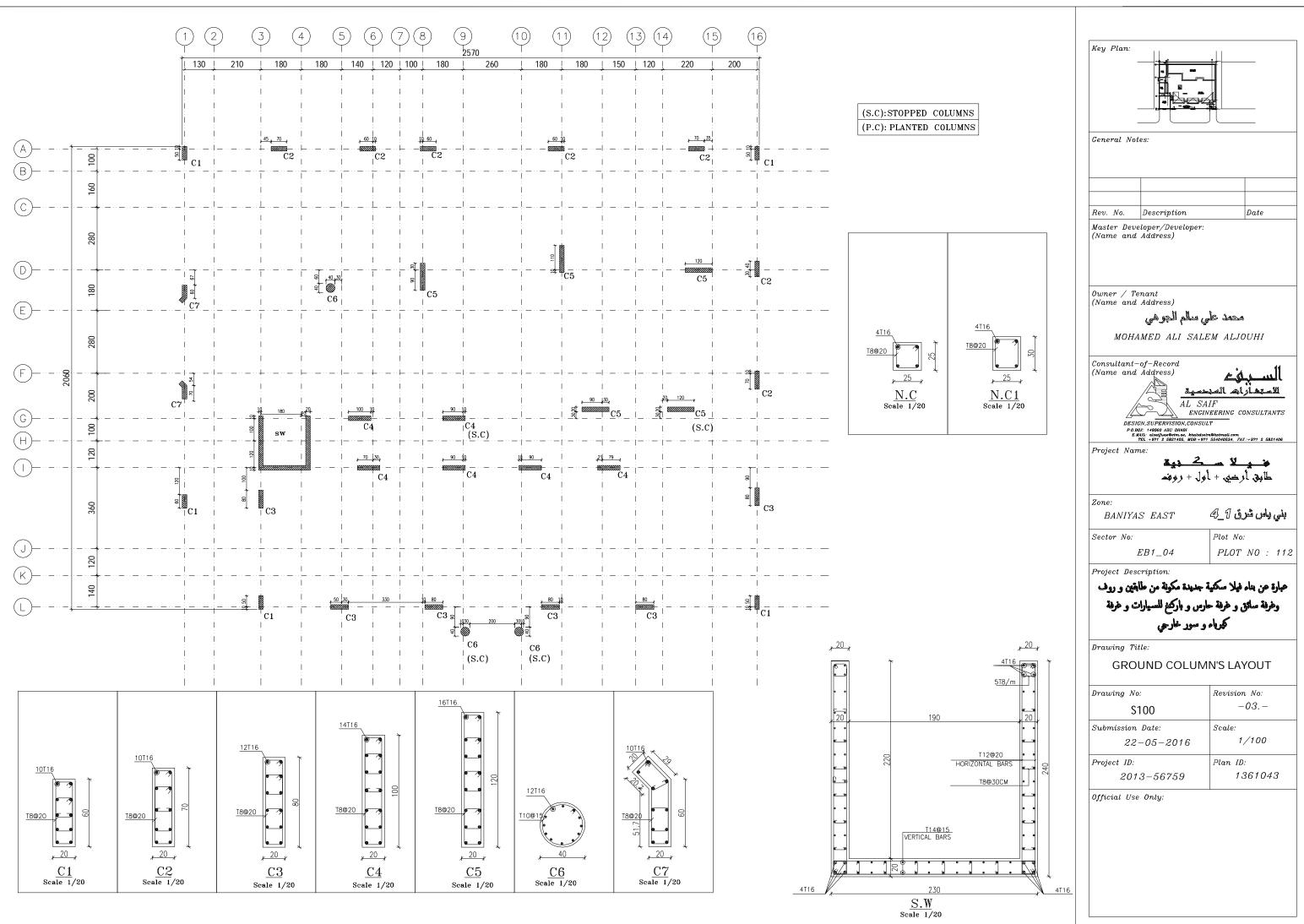
RC MEMBER DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigenda January 2008 and the UK national annex

Tedds calculation version 3.0.03

Concrete details - Table 3.1. Strength and deformation characteristics for concrete

Concrete strength class	C35/45
Aggregate type	Quartzite
Aggregate adjustment factor - cl.3.1.3(2)	AAF = 1.0
Characteristic compressive cylinder strength	f _{ck} = <mark>35</mark> N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 45 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 43 \text{ N/mm}^2$
Mean value of axial tensile strength	$f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/ 1 \text{ N/mm}^2)^{2/3} = 3.2 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	$E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} \times AAF = 34077 \text{ N/mm}^2$
Ultimate strain - Table 3.1	$\epsilon_{cu2} = 0.0035$
Shortening strain - Table 3.1	ε _{cu3} = 0.0035
Effective compression zone height factor	$\lambda = 0.80$
Effective strength factor	η = 1.00
Coefficient k1	k ₁ = 0.40
Coefficient k ₂	$k_2 = 1.0 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$
Coefficient k ₃	k ₃ = 0.40
Coefficient k ₄	$k_4 = 1.0 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$
Partial factor for concrete -Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} \ / \ \gamma_C = 19.8 \ N/mm^2$
Compressive strength coefficient - cl.3.1.6(1)	$\alpha_{ccw} = 1.00$
Design compressive concrete strength - exp.3.15	$f_{cwd} = \alpha_{ccw} \times f_{ck} / \gamma_C = 23.3 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = <mark>20</mark> mm
Monolithic simple support moment factor	β ₁ = 0.25
Reinforcement details	
Characteristic yield strength of reinforcement	f _{yk} = 500 N/mm ²
Partial factor for reinforcing steel - Table 2.1N	γs = 1.15
Design yield strength of reinforcement	$f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$
Nominal cover to reinforcement	
Nominal cover to top reinforcement	c _{nom_t} = 35 mm
Nominal cover to bottom reinforcement	c _{nom_b} = 35 mm
Nominal cover to side reinforcement	c _{nom_s} = 35 mm
Fire resistance	
Standard fire resistance period	R = <mark>60</mark> min
Number of sides exposed to fire	3
Minimum width of beam - EN1992-1-2 Table 5.5	b _{min} = 120 mm

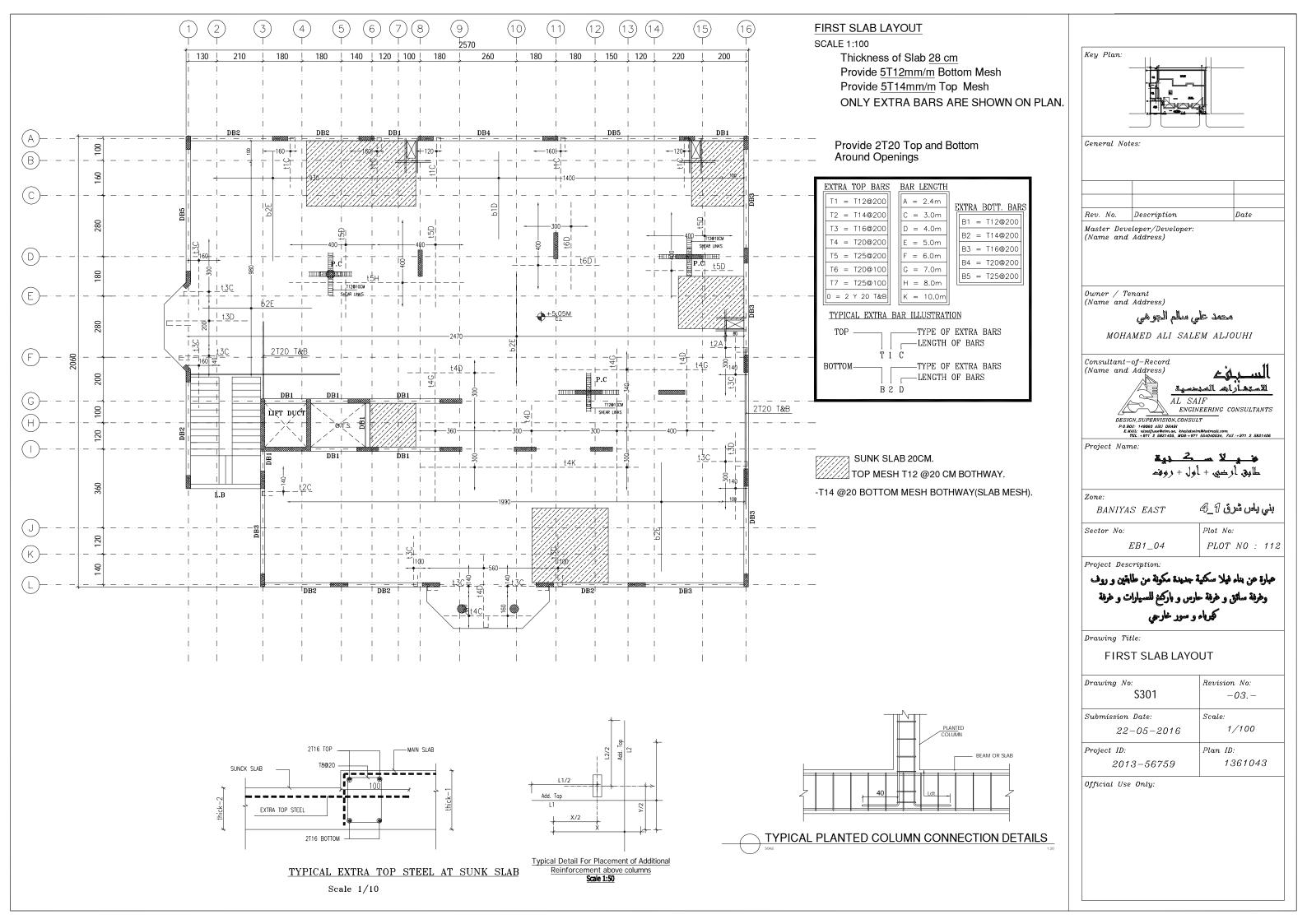

	Project Sample Calc	ulation			Job Ref.	
44	Section DB1				Sheet no./rev. 2	
SHAFEEKH MELANGADI	Calc. by Shafeekh	Date 6/2/2016	Chk'd by	Date	App'd by	Date
Section 1 - Design DB 1						
Rectangular section details						
Section width		b = <mark>300</mark> mm				
Section depth		h = <mark>500</mark> mm				
	200	2 ×	16φ 8 legs @ 250 16φ) c/c		
Positive moment - section 6.1 Design bending moment Effective depth of tension reinfor Redistribution ratio		$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = min(\delta_{pos_s} K = M / (b \times M))$	$_{s1}, 1) = 1.000$ $d^2 \times f_{ck}) = 0.04$		2 × k2)) × (λ × (δ -	k1) / (2 × k
Design bending moment Effective depth of tension reinfor		$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = min(\delta_{pos_s} K = M / (b \times M))$	s_{1} , 1) = 1.000 $d^{2} \times f_{ck}$) = 0.04 α_{cc} / γ_{C}) × (1 -	λ × (δ - k ₁) / (2		
Design bending moment Effective depth of tension reinfor		$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s} + K = M / (b \times K') = (2 \times \eta \times 0.207)$	f_{s1} , 1) = 1.000 $d^2 \times f_{ck}$) = 0.04 α_{cc} / γ_C) × (1 - <i>K'</i> > <i>I</i>	λ × (δ - k ₁) / (2 < - No compre	ssion reinforcer	nent is rec
Design bending moment Effective depth of tension reinfor Redistribution ratio		$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = min(\delta_{pos_s} = M / (b \times K' = (2 \times \eta \times 0.207))$ $z = min(0.5 \times 0.5)$	f_{s1} , 1) = 1.000 $d^2 \times f_{ck}$) = 0.04 α_{cc} / γ_C) × (1 - <i>K'</i> > <i>I</i>	λ × (δ - k ₁) / (2 < - No compre		nent is rec
Design bending moment Effective depth of tension reinfor Redistribution ratio	rcement	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s} + M / (b \times K') = (2 \times \eta \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = 2 \times (d - z)$ $K = 2 \times (d - z)$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = 2 \times (d - z)$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = 2 \times (d - z)$ $K = 2 \times (d - z)$	$s_{1}, 1) = 1.000$ $d^{2} \times f_{ck}) = 0.04$ $\alpha_{cc} / \gamma_{C}) \times (1 - K' > K')$ K' > K' = 1	λ × (δ - k ₁) / (2 Κ - Νο compre 2 × Κ / (η × α _{cc}	ssion reinforcer	nent is rec
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis	rcement	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s} + M / (b \times K') = (2 \times \eta \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times \pi \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = 2 \times (d - z)$ $K = 2 \times (d - z)$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = 2 \times (d - z)$ $K = M / (b \times K') = (2 \times \eta \times K')$ $K = 2 \times (d - z)$ $K = 2 \times (d - z)$	$(s_{1}, 1) = 1.000$ $d^{2} \times f_{ck}) = 0.04$ $\alpha_{cc} / \gamma_{C}) \times (1 - 1)$ K' > H $(d \times [1 + (1 - 2)) / \lambda = 56 \text{ mm}$	λ × (δ - k ₁) / (2 Κ - Νο compre 2 × Κ / (η × α _{cc}	ssion reinforcer	nent is rec
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re	rcement	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = min(\delta_{pos_s})$ $K = M / (b \times K' = (2 \times \eta \times 0.207)$ $z = min(0.5 \times 10^{-5})$ $x = 2 \times (d - z)$ $A_{s,req} = M / (f)$	$\begin{aligned} s_{1}, 1) &= 1.000 \\ d^{2} \times f_{ck}) &= 0.04 \\ \alpha_{cc} / \gamma_{C}) \times (1 - K' > K' \\ &< d \times [1 + (1 - 2)] \\ &< d \times [1 + (1 - 2)] \\ &> \lambda = 56 \text{ mm} \\ &\\ s_{yd} \times z) &= 539 \text{ m} \end{aligned}$	λ × (δ - k ₁) / (2 Κ - Νο compre 2 × Κ / (η × α _{cc}	ssion reinforcer	nent is rec
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided	rcement equired rovided	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s1} = M / (b \times W) + (b \times W$	$\begin{aligned} s_{1}, 1) &= 1.000 \\ d^{2} \times f_{ck}) &= 0.04 \\ \alpha_{cc} / \gamma_{C}) \times (1 - K' > K' \\ &< d \times [1 + (1 - 2)] \\ &< d \times [1 + (1 - 2)] \\ &> \lambda = 56 \text{ mm} \\ &\\ s_{yd} \times z) &= 539 \text{ m} \end{aligned}$	λ × (δ - k ₁) / (2 < - No compre 2 × K / (η × α _{cc} nm²	ession reinforcen / γ _C)) ^{0.5}], 0.95 × α	nent is rec
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr	rcement equired rovided - exp.9.1N	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s1} = M / (b \times W) + (b \times W$	$(s_{1}, 1) = 1.000$ $d^{2} \times f_{ck}) = 0.04$ $\alpha_{cc} / \gamma_{C}) \times (1 - K' > K' + K' + K' + K' + K' + K' + K' +$	λ × (δ - k ₁) / (2 < - No compre 2 × K / (η × α _{cc} nm ² , 0.0013) × b ×	ession reinforcen / γ _C)) ^{0.5}], 0.95 × α	nent is rec
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement	rcement equired rovided - exp.9.1N - cl.9.2.1.1(3)	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s} + M_s) = 0.207$ $K = M / (b \times M_s) = 0.207$ $Z = \min(0.5 \times M_s) = 0.207$ $Z = \min(0.5 \times M_s) = 0.207$ $Z = \min(0.5 \times M_s) = 0.04$ $A_{s,req} = M / (f + M_s) = 0.04$ $A_{s,min} = \max(0.5 \times M_s) = 0.04$	s1, 1) = 1.000 $d^2 \times f_{ck}$) = 0.04 α_{cc} / γ_c) × (1 - K' > H × $d \times [1 + (1 - 2)]$ $\chi = 56 \text{ mm}$ $\chi_d \times z$) = 539 m mm ² 0.26 × f_{ctm} / f_{yk} × $b \times h$ = 6000	λ × (δ - k ₁) / (2 < - No compre 2 × K / (η × α _{cc} nm ² , 0.0013) × b ×) mm ²	ession reinforcen / γ _C)) ^{0.5}], 0.95 × α	nent is rec d) = 427 m
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement Maximum area of reinforcement	rcement equired rovided - exp.9.1N - cl.9.2.1.1(3)	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s1} = M + M)$ $K = M / (b \times M)$ $K' = (2 \times \eta \times M)$ C = 0.207 $z = \min(0.5 \times M)$ $z = 2 \times (d - Z)$ $A_{s,req} = M / (f = 3 \times 16\phi)$ $A_{s,min} = \max(0.5 \times M)$ $A_{s,min} = \max(0.5 \times M)$ $A_{s,min} = \max(0.5 \times M)$ $A_{s,max} = 0.04$	s1, 1) = 1.000 $d^2 \times f_{ck}$) = 0.04 α_{cc} / γ_c) × (1 - K' > H × $d \times [1 + (1 - 2)]/\lambda = 56 \text{ mm}$ $y_d \times z$) = 539 m mm ² 0.26 × f_{ctm} / f_{yk} × b × h = 6000 ent provided is	λ × (δ - k ₁) / (2 < - No compre 2 × K / (η × α _{cc} nm ² , 0.0013) × b ×) mm ²	ession reinforcer / γ _C)) ^{0.5}], 0.95 × α d = 225 mm ²	nent is rec d) = 427 m
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement Maximum area of reinforcement Crack control - Section 7.3 Maximum crack width	rcement equired rovided - exp.9.1N - cl.9.2.1.1(3) PASS - Area	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s})$ $K = M / (b \times K' = (2 \times \eta \times 0.207)$ $z = \min(0.5 \times x = 2 \times (d - z \times 0.207)$ $z = 2 \times (d - z \times 0.207)$ $A_{s,req} = M / (f \times 0.207)$ $A_{s,req} = M / (f \times 0.207)$ $A_{s,min} = \max(A_{s,min} = \max(A_{s,min} = 0.04))$ of reinforcements $w_{k} = 0.3 \text{ mm}$	s1, 1) = 1.000 $d^2 \times f_{ck}$) = 0.04 α_{cc} / γ_c) × (1 - K' > H × d × [1 + (1 - 2 $\chi / \lambda = 56 \text{ mm}$ $f_{yd} \times z$) = 539 m mm ² 0.26 × f_{ctm} / f_{yk} × b × h = 6000 ent provided is	λ × (δ - k ₁) / (2 < - No compre 2 × K / (η × α _{cc} nm ² , 0.0013) × b ×) mm ²	ession reinforcer / γ _C)) ^{0.5}], 0.95 × α d = 225 mm ²	nent is rec d) = 427 m
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement of Maximum area of reinforcement Crack control - Section 7.3 Maximum crack width Design value modulus of elastici	rcement rovided - exp.9.1N - cl.9.2.1.1(3) PASS - Area ity reinf – 3.2.7(4	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s} + K) = M / (b \times K') = (2 \times \eta \times K') = (2 \times K$	s1, 1) = 1.000 $d^2 \times f_{ck}$) = 0.04 α_{cc} / γ_{C}) × (1 - K' > H × $d \times [1 + (1 - 2)]$ $\lambda = 56 \text{ mm}$ $y_d \times z$) = 539 m mm ² 0.26 × f_{ctm} / f_{yk} × $b \times h = 6000$ ent provided is	λ × (δ - k ₁) / (2 < - No compre 2 × K / (η × α _{cc} nm ² , 0.0013) × b ×) mm ²	ession reinforcer / γ _C)) ^{0.5}], 0.95 × α d = 225 mm ²	nent is rec d) = 427 m
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement Maximum area of reinforcement Crack control - Section 7.3 Maximum crack width Design value modulus of elastici Mean value of concrete tensile s	rcement rovided - exp.9.1N - cl.9.2.1.1(3) PASS - Area ity reinf – 3.2.7(4	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s1} = M + M) = M + M$ $K = M / (b \times K' = (2 \times \eta \times M) = 0.207$ $z = \min(0.5 \times M) = 2 \times (d - z + M) = M + M$ $z = 2 \times (d - z + M) = M + M + M + M$ $A_{s,req} = M / (f + M) = M + M + M + M + M + M + M + M + M + M$	s1, 1) = 1.000 $d^2 \times f_{ck}$) = 0.04 α_{cc} / γ_{C}) × (1 - K' > H × $d \times [1 + (1 - 2)]$ $\lambda = 56 \text{ mm}$ $y_d \times z$) = 539 m mm ² 0.26 × f_{ctm} / f_{yk} × $b \times h = 6000$ ent provided is	λ × (δ - k ₁) / (2 < - No compre 2 × K / (η × α _{cc} nm ² , 0.0013) × b ×) mm ²	ession reinforcer / γ _C)) ^{0.5}], 0.95 × α d = 225 mm ²	nent is rec d) = 427 m
Design bending moment Effective depth of tension reinfor Redistribution ratio Lever arm Depth of neutral axis Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement of Maximum area of reinforcement Crack control - Section 7.3 Maximum crack width Design value modulus of elastici	rcement equired rovided - exp.9.1N - cl.9.2.1.1(3) PASS - Area ity reinf – 3.2.7(4	$M = M_{pos_s1} = d = 449 \text{ mm}$ $\delta = \min(\delta_{pos_s} + k) = M / (b \times k') = (2 \times \eta \times k') = (2 \times k') = (2 \times \eta \times k') = (2 \times k') = (2 \times k') = (2 \times k') = (2 \times k'$	s1, 1) = 1.000 $d^2 \times f_{ck}$) = 0.04 α_{cc} / γ_{c}) × (1 - K' > I × $d \times [1 + (1 - 2)] / \lambda = 56 mm$ yd × z) = 539 m mm ² 0.26 × f_{ctm} / f_{yk} × b × h = 6000 ent provided is N/mm ² 3.2 N/mm ²	$\lambda \times (\delta - k_1) / (2$ C - No compre $2 \times K / (\eta \times \alpha_{cc})$ $1 m^2$ $(0.0013) \times b \times b^2$ mm^2 S greater than	ession reinforcer / γ _C)) ^{0.5}], 0.95 × α d = 225 mm ²	nent is red d) = 427 m

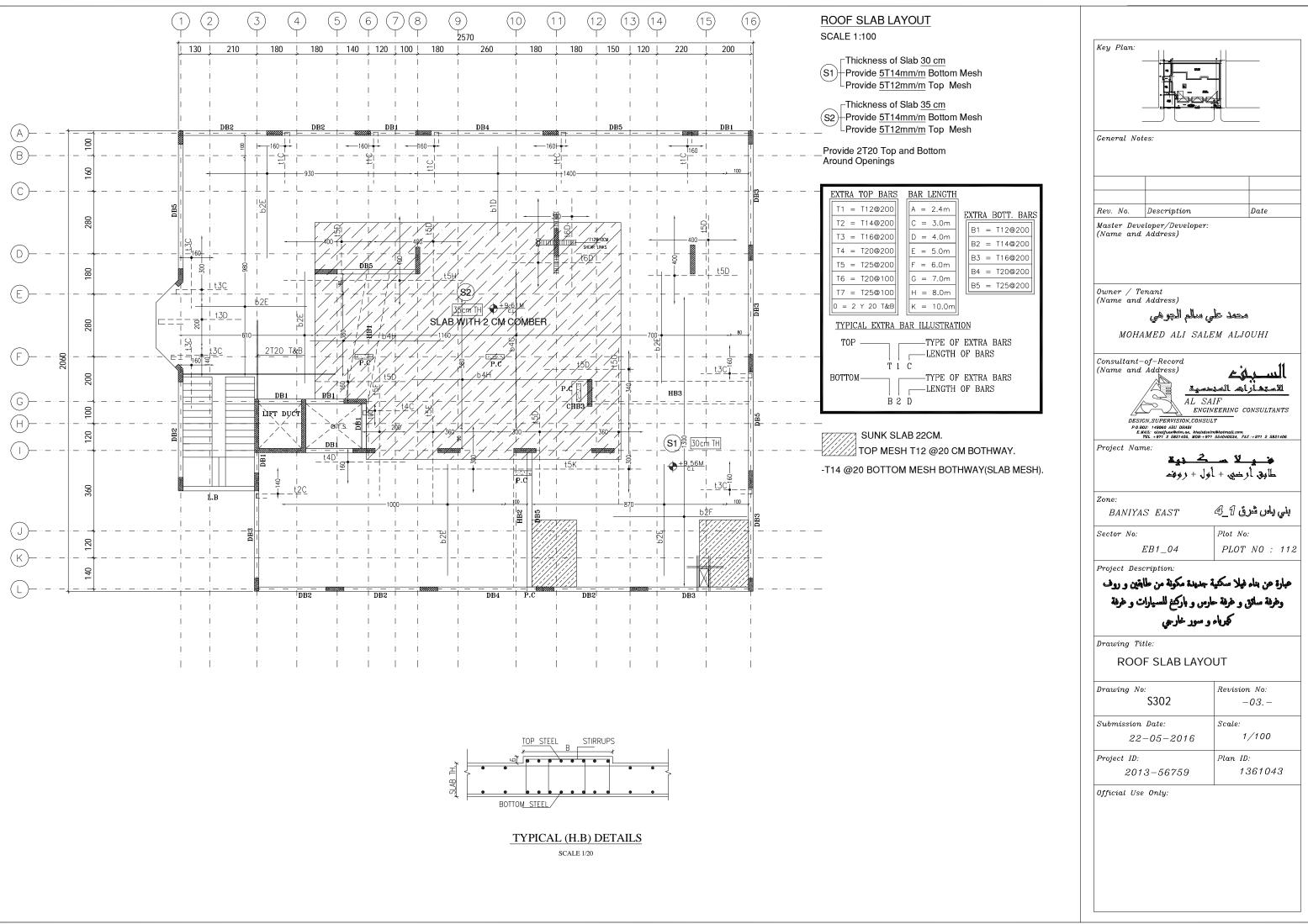

	^{>} roject Sample Calcu	ulation			Job Ref.	
	Section				Sheet no./rev	
	DB1				3	
	Calc. by Shafeekh	Date 6/2/2016	Chk'd by	Date	App'd by	Date
Maximum stress permitted - Table 7	.3N	σs = 321 N/r	nm²			
Steel to concrete modulus of elast. r	atio	$\alpha_{cr} = E_s / E_{cr}$	n = 5.87			
Distance of the Elastic NA from both	om of beam	$y = (b \times h^2 / mm)$	2 + $A_{s,prov} \times (\alpha_{cr}$	r - 1) × (h - d))	/ (b × h + $A_{s,prov}$	$\times (\alpha_{cr} - 1)) = 24$
Area of concrete in the tensile zone		$A_{ct} = b \times y =$	73854 mm ²			
Minimum area of reinforcement requ	ired - exp.7.1	$A_{sc,min} = k_c \times$	$k \times f_{\text{ct,eff}} \times A_{\text{ct}} / $	σ _s = 296 mm²		
PASS -	Area of tens	ion reinforcer	nent provided	exceeds mini	mum required i	for crack cont
Quasi-permanent moment		$M_{QP} = M_{pos_Q}$	_{P_s1} = <mark>65.0</mark> kNm	l		
Permanent load ratio		$R_{PL} = M_{QP} / $	VI = 0.65			
Service stress in reinforcement		$\sigma_{sr} = f_{yd} \times A_s$	$_{\rm req}$ / ${\sf A}_{\rm s,prov} imes {\sf R}_{\rm Pl}$	∟ = 253 N/mm²	2	
Maximum bar spacing - Tables 7.3N		Sbar,max = 184				
	PA	ASS - Maximui	n bar spacing	exceeds actu	al bar spacing i	for crack cont
Negative moment - section 6.1						
Design bending moment		M = M _{neg_s1} =	= <mark>35.0</mark> kNm			
Effective depth of tension reinforcem	nent	d = 449 mm				
Redistribution ratio		$\delta = \min(\delta_{neg})$	_{s1} , 1) = 1.000			
		$K = M / (b \times$	$d^2 \times f_{ck}$) = 0.01	7		
		K' = (2 × η × 0.207	α_{cc} / γ_{C}) $ imes$ (1 -	λ × (δ - k ₁) / (2	$(\mathbf{x} \times \mathbf{k}_2) \mathbf{x} \times (\mathbf{\lambda} \times (\mathbf{\delta}))$	- k ₁) / (2 × k ₂))
			K' > K	(- No compre	ssion reinforce	ment is requir
Lever arm		z = min(0.5		-	/ γc)) ^{0.5}], 0.95 ×	-
Depth of neutral axis			$(2) / \lambda = 56 \text{ mm}$, _	,
Area of tension reinforcement requir	ed	-	, f _{yd} × z) = 189 m	1m ²		
Tension reinforcement provided		2 × 16φ				
Area of tension reinforcement provid	led	A _{s,prov} = 402	mm²			
Minimum area of reinforcement - exp			$(0.26 \times f_{ctm} / f_{yk})$	0.0013) × b ×	d = 225 mm ²	
Maximum area of reinforcement - cl.	9.2.1.1(3)		× b × h = 6000			
ŀ	PASS - Area	of reinforcem	ent provided is	s greater than	area of reinfor	cement requir
Crack control - Section 7.3						
Maximum crack width		w _k = <mark>0.3</mark> mm	1			
Design value modulus of elasticity re	einf – 3.2.7(4)					
Mean value of concrete tensile stren	gth	$f_{\text{ct,eff}} = f_{\text{ctm}} =$	3.2 N/mm ²			
Stress distribution coefficient		k _c = 0.4				
Non-uniform self-equilibrating stress	coefficient	k = min(max	x(1 + (300 mm ·	- min(h, b)) × 0).35 / 500 mm, (0.65), 1) = 1.00
Actual tension bar spacing		s _{bar} = (b - (2 198 mm	\times (C _{nom_s} + ϕ_{s1_v}	ϕ) + $\phi_{s1_tL1} \times N_s$. _{1_t_L1})) / (N _{s1_t_L1}	- 1) + φ _{s1_t_L1} =
Maximum stress permitted - Table 7	.3N	σ _s = 242 N/r	nm²			
Steel to concrete modulus of elast. r	atio	$\alpha_{cr} = E_s / E_{cr}$	n = 5.87			
Distance of the Elastic NA from bott	om of beam	$y = (b \times h^2 / mm)$	2 + $A_{s,prov} \times (\alpha_{cr}$	r - 1) × (h - d))	/ (b × h + A _{s,prov}	× (α _{cr} - 1)) = 24
		111111				
Area of concrete in the tensile zone		$A_{ct} = b \times y =$	74231 mm ²			

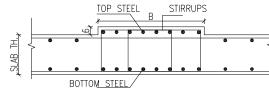
	Project Sample Calc	ulation			Job Ref.	
மா	Section DB1				Sheet no./rev.	
SHAFEEKH MELANGADI	Calc. by Shafeekh	Date 6/2/2016	Chk'd by	Date	App'd by	Date
PAS	S - Area of ten	sion reinforcen	nent provided	exceeds minii	num required fo	r crack cor
Quasi-permanent moment			_{P_s1} = 35.0kNm			
Permanent load ratio		$R_{PL} = M_{QP} / N_{PL}$				
Service stress in reinforcement		$\sigma_{sr} = f_{yd} \times A_{s}$	$_{\rm req}$ / A _{s,prov} × R _P	∟ = 204 N/mm²		
Maximum bar spacing - Tables 7	.3N	$S_{bar,max} = 244$. <mark>9</mark> mm			
		-		exceeds actua	al bar spacing fo	r crack cor
Minimum bar spacing (Section	8.2)					
Top bar spacing		$s_{top} = (b - (2$	× (C _{nom_s} + ϕ_{s1_v}) + $\phi_{s1_t_L} \times N_{s'}$	I_t_L1)) / (N _{s1_t_L1} -	1) = 182.0 r
Minimum allowable top bar spaci	ng	$S_{top,min} = max$	$(\phi_{s1_t_L} \times k_{s1}, h)$	_{agg} + k _{s2} , 20mn	n) = 25.0 mm	
			PASS - Act	tual bar spacir	ng exceeds mini	mum allowa
Bottom bar spacing		s _{bot} = (b - (2	× (Cnom_s + φs1_v) + $\phi_{s1_b_{L1}} \times N_s$	1_b_L1)) / (Ns1_b_L1	- 1) = <mark>83.0</mark> r
Minimum allowable bottom bar sp	pacing	S _{bot,min} = max	$(\phi_{s1_b_L1} \times k_{s1}, h)$	n _{agg} + k _{s2} , 20mr	n) = 25.0 mm	
			PASS - Ac	tual bar spacir	ig exceeds mini	mum allowa
Section in shear (section 6.2)			PASS - Act	tual bar spacir	ig exceeds mini	mum allowa
Section in shear (section 6.2) Angle of comp. shear strut for ma	aximum shear	$\theta_{max} = 45 \text{ deg}$		tual bar spacir	ig exceeds mini	mum allowa
					ig exceeds mini	mum allowa
Angle of comp. shear strut for ma	3(3)		9		ig exceeds mini	mum allowa
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2.	3(3) cl.6.2.3(3)	$v_1 = 0.6 \times (1)$ $\alpha_{cw} = 1.00$	g - f _{ck} / 250 N/m	m²) = 0.516	-	
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - c	3(3) cl.6.2.3(3)	$v_1 = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$	g - f _{ck} / 250 N/m	m²) = 0.516	ig exceeds mini ⁵ / f _{yk} = 284 mm ²	
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - o Minimum area of shear reinforcer	3(3) cl.6.2.3(3)	$v_1 = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$	g - f _{ck} / 250 N/m - N/mm² × b × (m²) = 0.516	-	
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - c Minimum area of shear reinforcer Design shear force at support	3(3) cl.6.2.3(3) ment - exp.9.5N	$v_1 = 0.6 \times (1 \ \alpha_{cw} = 1.00 \ A_{sv,min} = 0.08 \ V_{Ed,max} = V_{Ed},$ $z = 427 \ mm$	g - f _{ck} / 250 N/m - N/mm ² × b × (max_s1 = 50 kN	m²) = 0.516 f _{ck} / 1 N/mm²)º	-	/m
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - o Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed}$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$	g - $f_{ck} / 250 \text{ N/m}$ - $N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $\times b \times z \times v_1 \times f$	m²) = 0.516 f _{ck} / 1 N/mm²) ⁰ _{cwd} / (cot(θ _{max}) -	^{.5} / f _{yk} = <mark>284</mark> mm²	/m kN
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - o Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed}$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$	g - $f_{ck} / 250 \text{ N/m}$ - $N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $\times b \times z \times v_1 \times f$	m²) = 0.516 f _{ck} / 1 N/mm²) ⁰ _{cwd} / (cot(θ _{max}) -	^{.5} / f _{yk} = <mark>284</mark> mm ² + tan(θ _{max})) = 77(/m kN
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - o Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone Maximum design shear resistanc	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed},$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$ $Sign shear force$ $V_{Ed} = 50 \text{ kN}$	g - $f_{ck} / 250 \text{ N/m}$ - $N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $\times b \times z \times v_1 \times f$	m²) = 0.516 f _{ck} / 1 N/mm²) ⁰ _{cwd} / (cot(θ _{max}) less than may	^{.5} / f _{yk} = <mark>284</mark> mm ² + tan(θ _{max})) = 77(/m kN
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - c Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone Maximum design shear resistanc Design shear force	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9 <i>PASS - D</i> es	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed},$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$ Sign shear force $V_{Ed} = 50 \text{ kN}$ $v_{Ed} = V_{Ed} / (b)$	$f_{ck} / 250 \text{ N/m}$ $N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $\times b \times z \times v_1 \times f_{s}$ $at support is$ $b \times z) = 0.391 \text{ N}$	m ²) = 0.516 f _{ck} / 1 N/mm ²) ⁰ _{cwd} / (cot(θ _{max}) <i>less than may</i>	^{.5} / f _{yk} = <mark>284</mark> mm ² + tan(θ _{max})) = 77(/m) kN near resista
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - o Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone Maximum design shear resistanc Design shear force Design shear stress	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9 <i>PASS - D</i> es	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed},$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$ Sign shear force $V_{Ed} = 50 \text{ kN}$ $v_{Ed} = V_{Ed} / (b)$	$f_{ck} / 250 \text{ N/m}$ $N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $\times b \times z \times v_1 \times f_{s}$ $at support is$ $b \times z) = 0.391 \text{ N}$	m ²) = 0.516 f _{ck} / 1 N/mm ²) ⁰ _{cwd} / (cot(θ _{max}) <i>less than may</i>	⁵ / f _{yk} = 284 mm ² + tan(θ _{max})) = 77(kimum design si	/m) kN near resista
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - o Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone Maximum design shear resistanc Design shear force Design shear stress	3(3) cl.6.2.3(3) ment - exp.9.5N re - exp.6.9 PASS - Des trut - cl.6.2.3	$v_1 = 0.6 \times (1 \\ \alpha_{cw} = 1.00 \\ A_{sv,min} = 0.08 \\ V_{Ed,max} = V_{Ed}, \\ z = 427 mm \\ V_{Rd,max} = \alpha_{cw}$ bign shear force $V_{Ed} = 50 \text{ kN} \\ v_{Ed} = 50 \text{ kN} \\ v_{Ed} = V_{Ed} / (b \\ \theta = min(max) \\ = 21.8 deg$	$f_{ck} / 250 \text{ N/m}$ $N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $x b \times z \times v_1 \times f_{s}$ $at support is$ $(0.5 \times Asin[min])$	m ²) = 0.516 f _{ck} / 1 N/mm ²) ⁰ _{cwd} / (cot(θ _{max}) <i>less than may</i>	⁵ / f _{yk} = 284 mm ² + tan(θ _{max})) = 77(<i>cimum design si</i> × f _{cd} × v ₁),1)], 21	/m) kN near resista
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - of Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone Maximum design shear resistanc Design shear force Design shear stress Angle of concrete compression st	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9 <i>PASS - Des</i> trut - cl.6.2.3 ired - exp.6.8	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed},$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$ $dign shear force$ $V_{Ed} = 50 \text{ kN}$ $v_{Ed} = V_{Ed} / (b)$ $\theta = min(max)$ $= 21.8 \text{ deg}$ $A_{sv,des} = v_{Ed} > 0$	$f_{ck} / 250 \text{ N/m}$ $N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $x b \times z \times v_1 \times f_{s}$ $at support is$ $(0.5 \times Asin[min])$	$m^{2}) = 0.516$ $f_{ck} / 1 N/mm^{2})^{0}$ $c_{cwd} / (cot(\theta_{max}) - less than max)$ l/mm^{2} $n(2 \times v_{Ed} / (\alpha_{cw} - m)) = 108 mm^{2}/r$	⁵ / f _{yk} = 284 mm ² + tan(θ _{max})) = 77(<i>cimum design si</i> × f _{cd} × v ₁),1)], 21	/m) kN near resista
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - of Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone Maximum design shear resistanc Design shear force Design shear stress Angle of concrete compression st Area of shear reinforcement requ	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9 <i>PASS - Des</i> trut - cl.6.2.3 ired - exp.6.8	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed},$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$ $dign shear force$ $V_{Ed} = 50 \text{ kN}$ $v_{Ed} = V_{Ed} / (b)$ $\theta = min(max)$ $= 21.8 \text{ deg}$ $A_{sv,des} = v_{Ed} > 0$	$f_{ck} / 250 \text{ N/m}$ $N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $x b \times z \times v_1 \times f_{s}$ $at support is$ $b \times z) = 0.391 \text{ N}$ $(0.5 \times \text{Asin[min]})$ $(b / (f_{yd} \times \text{cot}(\theta))$ $(A_{sv,min}, A_{sv,des}) = 0$	$m^{2}) = 0.516$ $f_{ck} / 1 N/mm^{2})^{0}$ $c_{cwd} / (cot(\theta_{max}) - less than max)$ l/mm^{2} $n(2 × v_{Ed} / (\alpha_{cw} - m)) = 108 mm^{2}/r$	⁵ / f _{yk} = 284 mm ² + tan(θ _{max})) = 77(<i>cimum design si</i> × f _{cd} × v ₁),1)], 21	/m) kN near resista
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - c Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone Maximum design shear resistanc Design shear force Design shear force Design shear stress Angle of concrete compression st Area of shear reinforcement requ	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9 <i>PASS - Des</i> trut - cl.6.2.3 ired - exp.6.8 ired	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed},$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$ $Sign shear force$ $V_{Ed} = 50 \text{ kN}$ $v_{Ed} = V_{Ed} / (b)$ $\theta = min(max)$ $= 21.8 \text{ deg}$ $A_{sv,des} = v_{Ed} \times A_{sv,req} = max$	$f_{ck} / 250 \text{ N/m}$ $= N/mm^2 \times b \times (max_{s1} = 50 \text{ kN})$ $= b \times z \times v_1 \times f_s$ $= at \text{ support is}$ $= 0 \times z) = 0.391 \text{ N}$ $= (0.5 \times \text{Asin[min]} \times b / (f_{yd} \times \text{cot}(\theta))$ $= (A_{sv,min}, A_{sv,des}) = 250 \text{ c/c}$	$m^{2}) = 0.516$ $f_{ck} / 1 N/mm^{2})^{0}$ $c_{cwd} / (cot(\theta_{max}) - less than max)$ l/mm^{2} $n(2 × v_{Ed} / (\alpha_{cw} - m)) = 108 mm^{2}/r$	⁵ / f _{yk} = 284 mm ² + tan(θ _{max})) = 77(<i>cimum design si</i> × f _{cd} × v ₁),1)], 21	/m) kN near resista
Angle of comp. shear strut for ma Strength reduction factor - cl.6.2. Compression chord coefficient - o Minimum area of shear reinforcer Design shear force at support Min lever arm in shear zone Maximum design shear resistanc Design shear force Design shear force Design shear stress Angle of concrete compression st Area of shear reinforcement requ Area of shear reinforcement requ Shear reinforcement provided	3(3) cl.6.2.3(3) ment - exp.9.5N e - exp.6.9 <i>PASS - Des</i> trut - cl.6.2.3 ired - exp.6.8 ired ided	$v_{1} = 0.6 \times (1)$ $\alpha_{cw} = 1.00$ $A_{sv,min} = 0.08$ $V_{Ed,max} = V_{Ed},$ $z = 427 \text{ mm}$ $V_{Rd,max} = \alpha_{cw}$ $dign shear force$ $V_{Ed} = 50 \text{ kN}$ $v_{Ed} = V_{Ed} / (b)$ $\theta = min(max)$ $= 21.8 \text{ deg}$ $A_{sv,des} = v_{Ed} >$ $A_{sv,req} = max$ $2 \times 8 \text{ legs } @$ $A_{sv,prov} = 402$	$f_{ck} / 250 \text{ N/m}$ $f_{ck} = 50 \text{ kN}$	m ²) = 0.516 $f_{ck} / 1 N/mm^2)^0$ $c_{cwd} / (cot(\theta_{max}) - 1)^0$ less than max l/mm^2 $h(2 \times v_{Ed} / (\alpha_{cw}))$ $= 108 mm^2/m^2$	⁵ / f _{yk} = 284 mm ² + tan(θ _{max})) = 77(<i>cimum design si</i> × f _{cd} × v ₁),1)], 21	/m kN near resista 8 deg), 45d

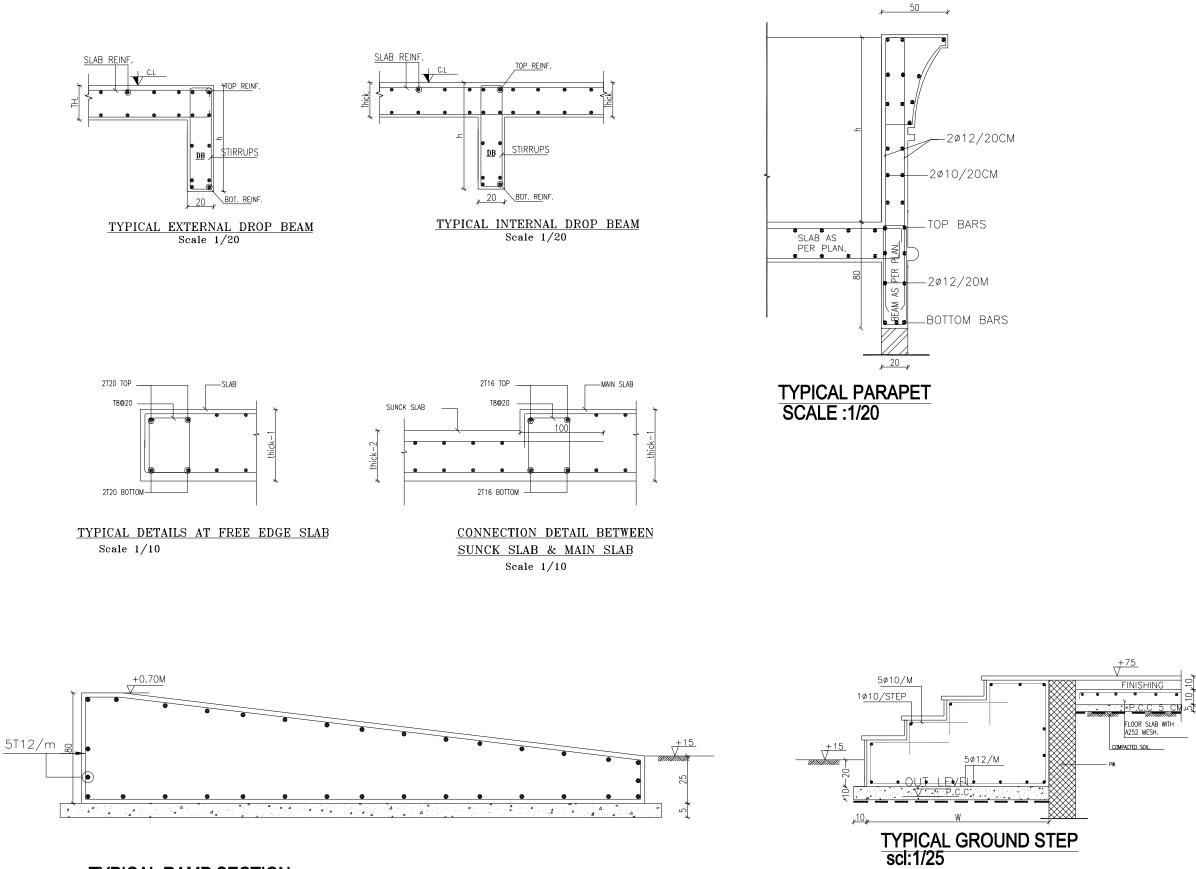
STRUCTURAL DETAILING

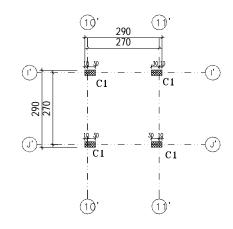
FOR APPROVAL FROM MUNCIPALITY

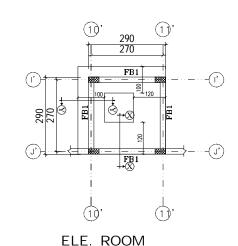


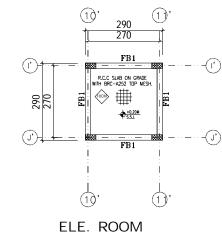

			SC	HEDULI	E OF FOUN	IDTION	BEAMS				
BEAM MARK	BEAM SIZES BxH	REINFORCEMENT								TOP	\mathbf{x}
		TOP STEEL		BOTTOM STEEL		STIRRUPS				I EVEI	MARK
		FULL BAR	EXTRA CUT BAR AT MID SPAN	FULL BAR	EXTRA CUT BAR UNDER SUPPORT	UPTO L/3 FROM SUPPORT	MIDDLE SPAN L/3	NO.OF LEGS	SIDE BARS	(m)	REM
FB1	25X110	2T20	2T20	2T20	2T20	T10@15	T10@20	2	2T12@20	+0.10	
FB2	25X110	3T20	2T20	2T20	3T20	T10@15	T10@20	2	2T12@20	+0.10	
FB3	25X110	3T20	3T20	3T20	5T20	T10@15	T10@20	2	2T12@20	+0.10	
FB4	25X110	5T20	3T20	3T20	5T20	T10@15	T10@20	2	2T12@20	+0.10	
FB5	25X110	4T20	4T20	4T20	4T20	T12@15	T12@20	2	2T12@20	+0.10	
PW	25X165	3T20		3T20		T12@20	T12@20	2	2T12@20	+0.65	
PW1	25X180	3T20		3T20		T12@20	T12@20	2	2T12@20	+0.80	


DON'T USE EXTRA CUT BAR AT SUPPORT FOR SIMPLY SUPPOTRED BEAMS

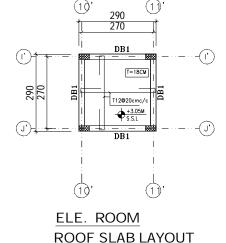

- Excavate and level the existing soil at the proposed Excavation level of 1.25m below existing ground surface.
- Compact using heavy rollers the existing soil at the bottom of excavation at 1.25m below existing ground surface to a minimum of 95% of its maximum dry density at its optimum moisture content obtained from the Modified Proctor Compaction Test.
- Construct one layer of Engineering fill 25cm thickness, compacted to 95% of its maximum dry density at its optimum moisture content obtained from modified Proctor test.
- Lay the Shallow Foundations at the level of 1.0m below the existing ground surface immediately after the compaction of the engineering fill is over.

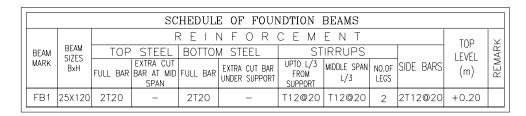


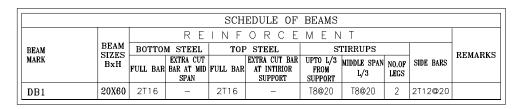


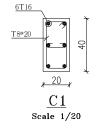

TYPICAL RAMP SECTION

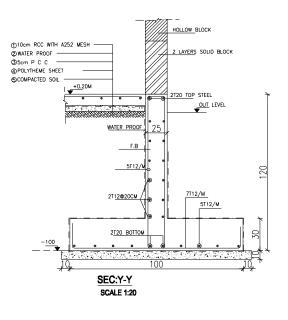
Key Plan: General Notes: Rev. No. Description Date Master Developer/Developer: (Name and Address) Owner / Tenant (Name and Address) محمد علي سالم الجو هي MOHAMED ALI SALEM ALJOUHI Consultant-of-Record (Name and Address) <u>حرفہ</u> للاستهار ابته المنحسية AL SAIF ENGINEERING CONSULTANTS DESIGN,SUPERVISION,CONSULT P.O.BOX: 149060 ABU DHABI E.MAIL: alsaifuae@eim.ae, khi TEL:+971 2 5821405, MOI Project Name: ک ډيک وني لا م طابق أرضي + أول + روقه Zone: بنی یاس شرق 1 🖉 BANIYAS EAST Sector No: Plot No: EB1_04 PLOT NO : 112 Project Description. **مبارة عن بناء فيلا سكنية جديدة مكونة من طابقين و روف** وغرفة سائق و غرفة حارس و باركنغ للسيارات و غرفة کپریاہ و سور خارجی Drawing Title: TYPICAL DETAILS-1 Drawing No: Revision No: S401 -03.-Submission Date: Scale:1/100 22-05-2016 Plan ID: Project ID: 1361043 2013-56759 Official Use Only:

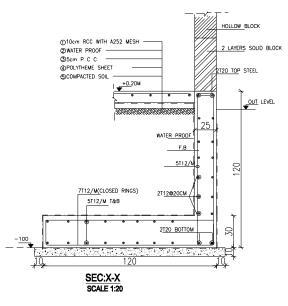


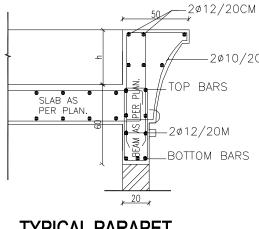

FOUNDATION LAYOUT








ELE. ROOM COLUMN LAYOUT



TYPICAL PARAPET SCALE :1/20

Key Plan: General Notes: Rev. No. Description Date Master Developer/Developer: (Name and Address) Owner / Tenant (Name and Address) محمد على سالم الجو هي MOHAMED ALI SALEM ALJOUHI Consultant - of - Record(Name and Address) <u>حمہ</u> للاستهارات المنحسية AL SAIF ENCINEERINC CONSULTANTS DESIGN, SUPERVISION, CONSULT P.O.BOX: 149060 ABU DHABI E.MAIL: alsaifuae@eim.ae, kk TEL:+971 2 5821405, MG ©hotmail.com 554040534. FAX. Project Name: <u>خ بو لا سے ډينه</u> طايق أرخين + أول + روفن Zone: بني پاس شرق 1_4 BANIYAS EAST Sector No: Plot No: EB1_04 PLOT NO : 112 Project Description: **حبارة عن بناء فيلا سكتية جديدة مكونة من طابقين و روف** وغرفة سائق و غرفة حارس و باركنغ للسيارات و غرفة کېرياء و سوړ خارجي Drawing Title: ELE. ROOM Structure Drawing Drawing No: Revision No: -03.-S504 Submission Date: Scale: 1/100 22-05-2016 Project ID: Plan ID: 1361043 2013-56759 Official Use Only:

-2ø10/20CM