
1 © Nokia 2018

Coding-Corner

Introduction to GraphQL

• Pierre-Henri Symoneaux

• 28-03-2018

Public



2 © Nokia 2018

• A query language for APIs 

• A runtime for fulfilling those queries with your existing data

• Already implemented in many languages

• Offers an aternative to REST APIs

• Developped by Facebook starting from 2012

• Published in 2015

Public

Introduction to GraphQL
A query language for your APIs



3 © Nokia 2018

• Provides a complete and understandable description of the data in your API

• Gives clients the power to ask for exactly what they need and nothing more

• Makes it easier to evolve APIs over time

• Enables powerful developer tools

• Prevents under-fetching and over-fetching

Public

Introduction to GraphQL
Why using graphQL



4 © Nokia 2018

• The query contains the data you need

• Queries always return predictable 
results. 

• Apps using GraphQL are fast and 
stable because they control the data 
they get, not the server.

Public

Introduction to GraphQL
Ask for what you need



5 © Nokia 2018

• GraphQL queries smoothly follow 
references between resources

• Typical REST APIs require loading 
from multiple URLs

• GraphQL APIs get all the data your 
app needs in a single request

• Apps using GraphQL can be quick 
even on slow network connections.

Public

Introduction to GraphQL
Get many ressources in a single request



6 © Nokia 2018

• APIs are organized in terms of types 
and fields, not endpoints

• Access the full capabilities of your 
data from a single endpoint

• Uses types to ensure Apps only ask 
for what’s possible

• Provide clear and helpful errors

Public

Introduction to GraphQL
A powerful type system



7 © Nokia 2018

• GraphQL supports schema introspection

• Know exactly what data you can request from your API without leaving your editor

• Highlight potential issues before sending a query

• Take advantage of improved code intelligence

Public

Introduction to GraphQL
Powerful developers tools



8 © Nokia 2018

• Add new fields and types to your GraphQL API without impacting existing queries

• Aging fields can be deprecated and hidden from tools

• By using a single evolving version, GraphQL APIs give apps continuous access to new 
features and encourage cleaner, more maintainable server code.

Public

Introduction to GraphQL
Evolve your APIs



9 © Nokia 2018

• GraphQL creates a uniform API across your entire application without being limited by a 
specific storage engine

• Write GraphQL APIs that leverage your existing data and code with GraphQL engines 
available in many languages

• You provide functions for each field in the type system, and GraphQL calls them with 
optimal concurrency.

Public

Introduction to GraphQL
Create uniform APIs



10 © Nokia 2018

Introduction to 
GraphQL
Schema and types

Public



11 © Nokia 2018

• Interface is strongly typed

• Schema defined programmatically or in IDL

Public

Schema and types
Schema definition

Book = GraphQL::ObjectType.define do
name "Book"
description "A book"
field :id, !types.Int, "The identification number“
field :title, !types.String, "The book's title”
field :year, !types.Int, "The year of publication“
field :Author, !Author, "Get the book author“

end



12 © Nokia 2018

• Scalar types

- Int

- Float

- String

- Boolean

• Custom scalar types

• Lists

• Enumerations

• Unions

• Interfaces

• Objects

• Nullable & non-nullable fields
Public

Schema and types
Supported types



13 © Nokia 2018

• Schema can be discovered with graphQL queries

• Mainly used by development tools

Public

Schema and types
Schema introspection



14 © Nokia 2018

Introduction to 
GraphQL
Queries and mutations

Public



15 © Nokia 2018

• Query: Read only requests

• Queries execution parrallelized

• Mutation: Writes data

• Queries execution are sequential

Public

Queries and mutations
Query or mutate your data



16 © Nokia 2018

• Ask for object and fields

• Fields can accept arguments

• Alias some fields

Public

Queries and mutations
Queries and Mutations



17 © Nokia 2018

• DRY, use fragments • Use variables

Public

Queries and mutations
Queries and Mutations



Public


