
1 © Nokia 2016

Tech Talk: Introduction
to Rust language
A systems programming language that runs blazingly
fast, prevents segfaults, and guarantees thread
safety

• Pierre-Henri Symoneaux

• 07-09-2017

Public

2 © Nokia 2016

• Zero-cost abstractions

• Move semantic

• Guaranteed memory safety

• Threads without data races

• Trait-based generics

• Pattern matching

• Type inference

• Minimal runtime

• Efficient C bindings

Public

The language in a few words

• A low level language compiled to CPU instructions (no bytecode)

• LLVM as the compiler backend. Supports many targets

• A powerful and very strict compiler performing many checks for safety

• Binaries are statically linked by default

• No Garbage Collector

Major features are :

3 © Nokia 2016

• Started as a personal project by Graydon Hoare in 2006 while working at Mozilla

• Mozilla started to contribute in 2009

• First official announcement made in 2010

• First alpha release in 2012

• Samsung joined the community in 2013 (working on the Servo engine)

• Stable 1.0 release in May 2015

• Current release from September 2017 is 1.20.0

Public

A bit of history

4 © Nokia 2016

• Ranked 40th on May 2017 Tiobe Index

• Rustlang’s GitHub page has around 1100 watchers, 21600 stars and 4000 forks

• Around 10000 libraries indexed on crates.io for a total of 150 000 000 downloads

• More and more influent adopters (see https://www.rust-lang.org/friends.html):

- Canonical, Chef, OVH, Dropbox, NPM, Samsung, Mozilla, Gnome, and more …

• According to Stackoverflow’s 2017 developer survey:

- Rust is the Most Loved Language for the 2nd year

- Rust is the 2nd top paying technology worldwide

Public

A growing popularity

https://www.rust-lang.org/friends.html

5 © Nokia 2016

• Rust has 3 release channels

- Stable, Beta and Nightly

- Stable release happen every 6 weeks (usually on Thursday)

• The nightly release has unstable/experimental features not available in beta and stable
releases

- In the language syntax itself

- In the standard library

• This presentation is not about unstable and experimental features and is only based on
stable release 1.20.0

Public

Release channels

6 © Nokia 2016

• Rustup : the rust installer, can switch between stable, beta and nightly releases

• Cargo and crates.io : package/project manager, is to Rust what NPM is to node.js

• Rustfmt and clippy : tools for formatting and linting the code

• Racer : a tool used by editors for autocompletion

• A set of very good documentations (standard library, books, guides)

- See https://doc.rust-lang.org/

• The Rust Language book

• The Unstable book

• The Rustonomicon

• This week in Rust : a weekly blog about news from the community

• Code editors

- Atom, VSCode, Sublime Text, Eclipse, and more … are well supported

Public

The ecosystem and the community

https://doc.rust-lang.org/

7 © Nokia 2016

The Rust Language

Basic features and syntax

Public

8 © Nokia 2016

• Compile by running rustc hello_world.rs

• Run hello_world or hello_world.exe

Public

Basic features and syntax
Hello World !!!

• In the file hello_world.rs, write

/// This is the program entry point
fn main() {

println!("Hello World !!!");
}

9 © Nokia 2016

• A syntax similar to C with block delimited by curly brackets

• Conditional control with keywords if, else, while, for, …

• The match keyword is similar to switch in C, with some enhancements

• Primitive types like i32, i64, u32, u64, u8, f32, f64

• Native Unicode strings

• Immutability by default

• Enums

• There’s no class, only structures

• Methods can be defined for structures

• Support pointers

• Namespaces

• Unit tests natively supported

Public

Basic features and syntax
Just to name a few of them

10 © Nokia 2016 Public

Basic features and syntax
A short example
/// A simple counter
pub struct Counter {

cnt: u64
}

impl Counter {
/// Creates a new counter initialized to 0
pub fn new() -> Counter {

return Counter {
cnt: 0

};
}

/// Get the current counter value
pub fn get_value(&self) -> u64 {

self.cnt // last expression is
returned if not ending by semicolon
}

/// Increments the counter value
pub fn incr(&mut self) {

self.cnt += 1;
}

}

pub fn main() {
let mut counter = Counter::new();
println!("value = {}", counter.get_value()); // Prints
"value = 0"
counter.incr();
println!("value = {}", counter.get_value()); // Prints
"value = 1"

}

#[cfg(test)]
mod tests {

use super::Counter;

#[test]
fn it_works() {

let mut counter = Counter::new();
assert_eq!(counter.get_value(), 0);
counter.incr();
assert_eq!(counter.get_value(), 1);

}
}

11 © Nokia 2016

• Rust support for embedded doctrings

• A doctring starts with ///

• Doctrings support Markdown syntax

• Embedded Rust code examples can be
tested by compiling and running them

• Generated HTML doc is well designed
and easy to browse

Public

Basic features and syntax
Embedded documentation

12 © Nokia 2016

The Rust language

Advanced features

Public

13 © Nokia 2016

• Closures

• Type inference

• No NULL pointer, only Optional types

Public

Advanced features
A powerful syntax inspired by functional languages

let array = [1, 2, 3, 4, 5];
let new_array : Vec<i32> = array.iter()

.map(|v| v*2) // This is a closure

.collect();
println!("New array = {:?}", new_array);

let new_array : Vec<_> = array.iter().map(|v| v*2).collect();

let new_array = array.iter().map(|v| v*2).collect::<Vec<_>>();

pub fn process(counter: Option<&mut Counter>) {
if let Some(cnt) = counter {

cnt.incr();
}

}
process(None);
process(Some(&mut counter));

// Both are valid
// x and y are both i32
let x: i32 = 12;
let y = 12;

14 © Nokia 2016

• Pattern matching and destructuring

Public

Advanced features
A powerful syntax inspired by functional languages

pub enum Stuff {
Count(Counter),
Str(String),
Nothing

}

pub fn get_some_stuff(stuff: Stuff) -> String {
match stuff {

Stuff::Nothing => format!("Got nothing"),
Stuff::Str(s) => format!("Got a string: {}", s),
Stuff::Count(cnt) => format!("Got a count: {}", cnt.get_value())

}
}

let i = 12;
match i {

0...5 => println!("Small"),
e @ 5...15 => println!("Not so small: {}", e),
e if e < 0 => println!("Negative"),
_ => println!("Big")

}

let b1 = true;
let b2 = false;
let r = match (b1, b2) {

(true, false) => "foo",
(false, true) => "bar",
_ => "baz"

};

15 © Nokia 2016

• Trait-based genericity

Public

Advanced features
A powerful syntax inspired by functional languages

pub trait Talk {
fn say_hello(&self);
fn say_goodbye(&self);

}

pub struct French;

impl Talk for French {
fn say_hello(&self) {

println!("Bonjour");
}

fn say_goodbye(&self) {
println!("Au revoir");

}
}

pub struct English;

impl Talk for English {
fn say_hello(&self) {

println!("Hello");
}

fn say_goodbye(&self) {
println!("Goodbye");

}
}

// Use trait object: a vtable is involved
pub fn talk(talker: &Talk) {

talker.say_hello();
talker.say_goodbye();

}

// The function will be implemented for each types
// it is called with
pub fn talk_no_cost<T: Talk>(talker: &T) {

talker.say_hello();
talker.say_goodbye();

}

let en = English;
let fr = French;
talk(&en);
talk_no_cost(&fr);

16 © Nokia 2016

• No exceptions, error handling based on returned values

• Standard library defines Result<T, E> which is returned by functions which may fail

• The result must be checked by caller

• The try! Macro or the ? operator can be used to propagate the error

Public

Advanced features
Error handling

pub enum Result<T, E> {
Ok(T), // Contains the success value
Err(E), // Contains the error value

}

pub fn may_fail(fail: bool) -> Result<i32, String> {
if fail {

Err("It failed".to_string())
} else {

Ok(12)
}

}

let mut res: i32 = may_fail(true).expect("Function failed"); // Will panic on error
res = may_fail(false).unwrap_or(13); // Unwrap the result, or use 13 on error
// Plenty of other possibilities

pub fn may_fail2(fail: bool) -> Result<i32, String> {
let res: i32 = may_fail(fail)?;
println!("Function did not fail");
Ok(res)

}

pub fn may_fail2(fail: bool) -> Result<i32, String> {
let res: i32 = try!(may_fail(fail));
println!("Function did not fail");
Ok(res)

}

17 © Nokia 2016

• Macros let us extend syntax by manipulating the AST

• For example we could simplify commonly written code like

Public

Advanced features
Powerful macros

use std::collections::HashMap;
let mut map = HashMap::new();
map.insert("foo", 1);
map.insert("bar", 2);

let map2 = map! {
"foo" => 1,
"bar" => 2,

};
macro_rules! map {

($($key:expr => $value:expr,)*) => (
{

let mut map = std::collections::HashMap::new();
$(map.insert($key, $value);)*
map

}
)

}

Into by implementing a map! macro

19 © Nokia 2016 Public

Advanced features
FFI: Simple and efficient C bindings

• Bindgen is a tool which generates Rust
bindings from C headers

extern crate libc;
use libc::size_t;

#[repr(C)]
pub struct MyData {

id: u8
}

// Redefine signature for functions from
// mylib.dll, mylib.so, libmylib.dll or libmylib.so
#[link(name = "mylib")]
extern {

// Extern functions are unsafe by definition
// and would require a safe wrapper
fn my_c_function(data: *mut MyData) -> size_t;

}

#include <stdio.h>
#include <stdlib.h>

typedef struct my_data {
unsigned char id

} my_data;

size_t my_c_function(*my_data data);

20 © Nokia 2016

The Rust Language

The borrow checker

Public

21 © Nokia 2016

• One of the most important and powerful feature

• Check your code for a set of rules

• Checks are performed at compile time and has no runtime cost

• Prevents bad usage of memory

- Use after free

- Use after move

• Introduce notions of ownership, borrowing and lifetime

• You will love it, and you will hate it

• But hopefully, compiler errors are really friendly

Public

The borrow checker
What is it

22 © Nokia 2016

• Variable bindings have ownership of what they’re bound to

- Moving the value will transfer ownership, preventing the use after move

- Valid code would be

• Either use b instead of a

• Or clone a into b

Public

The borrow checker
Ownership

let a = vec![1, 2, 3];
let b = a;
a.get(0)

error[E0382]: use of moved value: `a`
--> src\main.rs:198:5
|

197 | let b = a;
| - value moved here

198 | a.get(0);
| ^ value used here after move
|
= note: move occurs because `a` has type `std::vec::Vec<i32>`, which does not implement the `Copy` trait

let a = vec![1, 2, 3];
let b = a;
b.get(0);

let a = vec![1, 2, 3];
let b = a.clone();
a.get(0);
b.get(0);

23 © Nokia 2016

• With ownership comes the borrowing

- Getting a reference (a pointer) to an existing binding

- A reference cannot outlive the value it points to

- A variable can have many immutable borrowers but only one mutable borrower

- Cannot move a value while it is borrowed

Public

The borrow checker
Borrowing

let a = vec![1, 2, 3];
// b is a reference to a
let b = &a;
a.get(0);
b.get(0);

let mut a = vec![1, 2, 3];
let b = &mut a;
a.push(0);
b.push(4);

error[E0499]: cannot borrow `a` as mutable more than once at a time
--> src\main.rs:206:5
|

205 | let b = &mut a;
| - first mutable borrow occurs here

206 | a.push(0);
| ^ second mutable borrow occurs here

207 | b.push(4);
208 | }

| - first borrow ends here

let mut a = vec![1, 2, 3];
let b = &mut a;
a.get(0);
b.push(4);

error[E0502]: cannot borrow `a` as immutable because it is also borrowed as mutable
--> src\main.rs:205:5
|

204 | let b = &mut a;
| - mutable borrow occurs here

205 | a.get(0);
| ^ immutable borrow occurs here

206 | b.push(4);
207 | }

| - mutable borrow ends here

24 © Nokia 2016

• Each reference has an attach lifetime

• Most of the time it’s implicit, but sometimes it can (must) be explicit

Public

The borrow checker
Lifetimes

let b = {
let a = vec![1, 2, 3];
&a

};

error: `a` does not live long enough
--> src\main.rs:213:5
|

212 | &a
| - borrow occurs here

213 | };
| ^ `a` dropped here while still borrowed

214 | }
| - borrowed value needs to live until here

struct MyStruct {
s: String

}
/// In that case, 'a is the lifetime. It's optional,
/// and given only for example.
/// In this example, the function returns a
/// reference to a string borrowed from the argument.
/// The argument will stay borrowed until
/// the string reference is dropped
fn get_string<'a>(val: &'a MyStruct) -> &'a String {

&val.s
}

/// In that case, the struct contains a borrowed
/// data and has a lifetime constraint meaning
/// it cannot outlive the borrowed data
struct Example<'a> {

ptr: &'a String
}

25 © Nokia 2016

The Rust language

Memory management

Public

26 © Nokia 2016

• No garbage collector No GC pauses

• Memory management is based on scopes

- When a variable reaches end of scope its memory is freed

- If the variable still owns its value (the value has not been moved), and if it has a destructor, the
destructor is called

- A destructor is defined by deriving from the trait Drop

Public

Memory management
RAII and destructors

struct Example;

impl Drop for Example {
fn drop(&mut self) {

println!("Destructor called");
}

}

27 © Nokia 2016

• Data can be stored on the stack

• Or on the heap through the Box type

- Box::new() allocates memory on the heap

- While the destructor (drop()) frees it

• Box<E> can be dereferenced to E thanks to Deref trait

This moves the value out of the heap to the stack, freeing the allocated heap space

• Ref Counted (Rc) and Atomically Ref Counted (Arc) references are available is std lib

Public

Memory management
The heap vs the stack

pub fn fn_ptr(ptr: &Counter) {}

let cnt_stack = Counter::new();
fn_ptr(&cnt_stack);

let cnt_heap = Box::new(Counter::new());
fn_ptr(&cnt_heap);

let cnt_moved : Counter = *cnt_heap;

28 © Nokia 2016

• Sometimes the compiler may not understand all the logic

• Pointer arithmetic

• Low level memory manipulation

• Foreign Function interfaces

• Developers need a way to tell it « Hey, trust me on this » and deactivate some constraints

• The unsafe keyword let us mark a block of code or a function as doing some unsafe things

• An unsafe block can cause segfaults if not properly written

• Some functions are unsafe, and cannot be called outside of an unsafe block

• Extern functions are unsafe by definition

• Raw pointers exists and have the exact same memory representation than references

• *mut T is the equivalent of &mut T

• *const T is the equivalent of &T

• Converting from reference to raw pointer is safe, the other way is not

Public

Memory management
Unsafe code

29 © Nokia 2016

• Pros

- An expressive language with little overhead

- Fit for real-time applications development

- Fit for embedded software development

- Memory safety makes it a good candidate for critical applications

- While it’s a bit hard to learn, it’s also a lot of fun

- The Rust community is very welcoming and tolerant

• Cons

- The learning curve is quite steep

- A majority of third-party libraries are still immature

- A permanent fight against the compiler

Public

Conclusion

pierre-henri.symoneaux@nokia.com

